Skip to main content
Log in

Modification of polysulfone ultrafiltration membranes using block copolymer Pluronic F127

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of the addition of triblock copolymer polyethylene glycol (PEG)–polypropylene glycol (PPG)–polyethylene glycol (PEG) (Pluronic F127) and polyethylene glycol (PEG-4000, Mn = 4000 g mol−1) to the polysulfone (PSF) casting solution on the membrane structure and performance was studied. The phase state, viscosity and turbidity of PSF solutions in N,N-dimethylacetamide (DMAc) with the addition of block copolymer Pluronic F127 were investigated. It was found that 18–22 wt.% PSF solutions in DMAc with Pluronic F127 content ≥ 5 wt.% feature a lower critical solution temperature (LCST). Membrane structure was investigated using scanning electron and atomic force microcopies. It was revealed that average pore size and pore amount on the surface of the membrane selective layer increase and pore size distribution becomes wider with an increase in Pluronic F127 content in the casting solution. It was found that the average surface roughness parameters of the membrane selective layer for PSF/Pluronic F127 membranes significantly exceed those for PSF/PEG-4000 membranes. It was shown that the increase in the membrane flux and the decrease in polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g mol−1) rejection are a result of the addition of both Pluronic F127 and PEG-4000 into the casting solution. It was revealed that PSF/Pluronic F127 membranes are characterized by higher pressure resistance in ultrafiltration process, a lower total flux decrease during ultrafiltration of bovine serum albumin solutions. The antifouling performance of PSF/Pluronic F127 membranes was found to exceed significantly the antifouling performance of PSF/PEG-4000 membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kochkodan V, Johnson DJ, Hilal N (2014) Polymeric membranes: surface modification for minimizing (bio) colloidal fouling. Adv Colloid Interface Sci 206:116–140. https://doi.org/10.1016/j.cis.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  2. Tavangar T, Karimi M, Rezakazemi M, Reddy KR, Aminabhavi TM (2019) Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J 385:123787. https://doi.org/10.1016/j.cej.2019.123787

    Article  CAS  Google Scholar 

  3. Dharupaneedi SP, Kotrappanavar Nataraj S, Nadagouda M, Raghava Reddy K, Shukla SS, Aminabhavi TM (2018) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866. https://doi.org/10.1016/j.seppur.2018.09.003

    Article  CAS  Google Scholar 

  4. Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M (2019) A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Membr Sci 588:117221–117267. https://doi.org/10.1016/j.memsci.2019.117221

    Article  CAS  Google Scholar 

  5. Jhaveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154. https://doi.org/10.1016/j.desal.2015.11.009

    Article  CAS  Google Scholar 

  6. Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C, Jiang Z (2018) Antifouling membrane surface construction: chemistry plays a critical role. J Membr Sci 551:145–171. https://doi.org/10.1016/j.memsci.2018.01.039

    Article  CAS  Google Scholar 

  7. Upadhyaya L, Qian X, Wickramasinghe SR (2018) Chemical modification of membrane surface—overview. Curr Opin Chem Eng 20:13–18. https://doi.org/10.1016/j.coche.2018.01.002

    Article  Google Scholar 

  8. Huang S, Ras RH, Tian X (2018) Antifouling membranes for oily wastewater treatment: interplay between wetting and membrane fouling. Curr Opin Colloid Interface Sci 36:90–109. https://doi.org/10.1016/j.cocis.2018.02.002

    Article  CAS  Google Scholar 

  9. Wu T, Liu Y, Zhu GD, Li ZN, Yi Z, Liu LF, Gao CJ (2019) Point-by-point comparisons of permselectivity and fouling-resistance of membranes prepared from blending with di-block and tri-block copolymers. Polymer 185:121949–121959. https://doi.org/10.1016/j.polymer.2019.121949

    Article  CAS  Google Scholar 

  10. Ananth A, Arthanareeswaran G, Wang H (2012) The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. Desalination 287:61–70. https://doi.org/10.1016/j.desal.2011.11.030

    Article  CAS  Google Scholar 

  11. Zheng QZ, Wang P, Yang YN (2006) Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process. J Membr Sci 279:230–237. https://doi.org/10.1016/j.memsci.2005.12.009

    Article  CAS  Google Scholar 

  12. Liu M, Wei YM, Xu ZL, Guo RQ, Zhao LB (2013) Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system. J Membr Sci 437:169–178. https://doi.org/10.1016/j.memsci.2013.03.004

    Article  CAS  Google Scholar 

  13. Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV (2018) Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: effect of polyethylene glycol molecular weight and coagulation bath temperature. J Membr Sci 565:266–280. https://doi.org/10.1016/j.memsci.2018.08.038

    Article  CAS  Google Scholar 

  14. Bildyukevich AV, Plisko TV, Isaichykova YA, Ovcharova AA (2018) Preparation of high-flux ultrafiltration polyphenylsulfone membranes. Pet Chem 58:747–759. https://doi.org/10.1134/S0965544118090050

    Article  CAS  Google Scholar 

  15. Plisko TV, Bildyukevich AV, Usosky VV, Volkov VV (2016) Influence of the concentration and molecular weight of polyethylene glycol on the structure and permeability of polysulfone hollow fiber membranes. Pet Chem 56:321–329. https://doi.org/10.1134/S096554411604006X

    Article  CAS  Google Scholar 

  16. Park SH, Ahn Y, Jang M, Kim HJ, Cho KY, Hwang SS, Lee JH, Baek KY (2018) Effects of methacrylate based amphiphilic block copolymer additives on ultra filtration PVDF membrane formation. Sep Purif Technol 202:34–44. https://doi.org/10.1016/j.seppur.2018.03.018

    Article  CAS  Google Scholar 

  17. Jung B, Yoon JK, Kim B, Rhee HW (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243:45–57. https://doi.org/10.1016/j.memsci.2004.06.011

    Article  CAS  Google Scholar 

  18. Ochoa NA, Pradanos P, Palacio L, Pagliero C, Marchese J, Hernández A (2001) Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: characterisation of polyethersulfone UF membranes with dopes containing different PVP. J Membr Sci 187:227–237. https://doi.org/10.1016/S0376-7388(01)00348-9

    Article  CAS  Google Scholar 

  19. Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273:72–80. https://doi.org/10.1016/j.desal.2010.11.010

    Article  CAS  Google Scholar 

  20. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 315:36–47. https://doi.org/10.1016/j.memsci.2008.02.027

    Article  CAS  Google Scholar 

  21. Urkiaga A, Iturbe D, Etxebarria J (2015) Effect of different additives on the fabrication of hydrophilic polysulfone ultrafiltration membranes. Desalin Water Treat 56: 3415-3426. https://doi.org/10.1080/19443994.2014.1000976

  22. Bhattacharya R, Phaniraj TN, Shailaja D (2003) Polysulfone and polyvinyl pyrrolidone blend membranes with reverse phase morphology as controlled release systems: experimental and theoretical studies. J Membr Sci 227:23–37. https://doi.org/10.1016/j.memsci.2003.07.014

    Article  CAS  Google Scholar 

  23. Han MJ, Nam ST (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55–61. https://doi.org/10.1016/S0376-7388(01)00718-9

    Article  CAS  Google Scholar 

  24. Chen Y, Wei M, Wang Y (2016) Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. J Membr Sci 505:53–60. https://doi.org/10.1016/j.memsci.2016.01.030

    Article  CAS  Google Scholar 

  25. Chen L, Wu Y, Li Y, Zhang X, Qian J (2018) pH-responsive poly(vinylidene fluoride) membranes containing a novel poly(vinylidene fluoride)–poly(acrylic acid) block copolymer blending material. Mater Lett 210:124–127. https://doi.org/10.1016/j.matlet.2017.08.126

    Article  CAS  Google Scholar 

  26. Meyer J, Ulbricht M (2018) Poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers as functional additive for poly(vinylidene fluoride) ultrafiltration membranes with tailored separation performance. J Membr Sci 545:301–311. https://doi.org/10.1016/j.memsci.2017.09.034

    Article  CAS  Google Scholar 

  27. Ran F, Nie S, Zhao W, Li J, Su B, Sun S, Zhao C (2011) Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomater 7:3370–3381. https://doi.org/10.1016/j.actbio.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  28. Huang J, Xue J, Xiang K, Zhang X, Cheng C, Sun S, Zhao C (2011) Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)–polyurethane–methoxyl poly(ethylene glycol). Colloids Surf B Biointerfaces 88:315–324. https://doi.org/10.1016/j.colsurfb.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  29. Zhong D, Wang Z, Lan Q, Wang Y (2018) Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance. J Membr Sci 558:106–112. https://doi.org/10.1016/j.memsci.2018.04.021

    Article  CAS  Google Scholar 

  30. Wang J, Liu Y, Liu T, Xu X, Hu Y (2020) Improving the perm-selectivity and anti-fouling property of UF membrane through the micro-phase separation of PSf-b-PEG block copolymers. J Membr Sci 599:117851–117859. https://doi.org/10.1016/j.memsci.2020.117851

    Article  CAS  Google Scholar 

  31. Chen X, Tang B, Luo J, Wan Y (2017) Towards high-performance polysulfone membrane: the role of PSF-b-PEG copolymer additive. Microporous Mesoporous Mater 241:355–365. https://doi.org/10.1016/j.micromeso.2016.12.032

    Article  CAS  Google Scholar 

  32. Chen W, Wei M, Wang Y (2017) Advanced ultrafiltration membranes by leveraging microphase separation in macrophase separation of amphiphilic polysulfone block copolymers. J Membr Sci 525:342–348. https://doi.org/10.1016/j.memsci.2016.12.009

    Article  CAS  Google Scholar 

  33. Wang N, Wang T, Hu Y (2017) Tailoring membrane surface properties and ultrafiltration performances via the self-assembly of polyethylene glycol-block-polysulfone-block-polyethylene glycol block copolymer upon thermal and solvent annealing. ACS Appl Mater Interfaces 9:31018–31030. https://doi.org/10.1021/acsami.7b06997

    Article  CAS  PubMed  Google Scholar 

  34. Cheng J, Xu M, Cheng P et al (2019) Metal ions ‘sewing’isoporous membranes with polystyrene-block-poly(acrylic acid) block copolymer. J Membr Sci 587:117086–117093. https://doi.org/10.1016/j.memsci.2019.05.011

    Article  CAS  Google Scholar 

  35. Yang H, Wang Z, Lan Q, Wang Y (2017) Antifouling ultrafiltration membranes by selective swelling of polystyrene/poly(ethylene oxide) block copolymers. J Membr Sci 542:226–232. https://doi.org/10.1016/j.memsci.2017.08.015

    Article  CAS  Google Scholar 

  36. Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267. https://doi.org/10.1016/j.cej.2013.02.130

    Article  CAS  Google Scholar 

  37. Wang YQ, Su YL, Ma XL, Sun Q, Jiang ZY (2006) Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membr Sci 283:440–447. https://doi.org/10.1016/j.memsci.2006.07.021

    Article  CAS  Google Scholar 

  38. Arahman N, Arifin B, Mulyati S, Ohmukai Y, Matsuyama H (2012) Structure change of polyethersulfone hollow fiber membrane modified with Pluronic F127, polyvinylpyrrolidone, and Tetronic 1307. Mater Sci Appl 3:72–77. https://doi.org/10.4236/msa.2012.32011

    Article  CAS  Google Scholar 

  39. Chen W, Peng J, Su Y, Zheng L, Wang L, Jiang Z (2009) Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep Purif Technol 66:591–597. https://doi.org/10.1016/j.seppur.2009.01.009

    Article  CAS  Google Scholar 

  40. Susanto H, Ulbricht M (2009) Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J Membr Sci 327:125–135. https://doi.org/10.1016/j.memsci.2008.11.025

    Article  CAS  Google Scholar 

  41. Loh CH, Wang R, Shi L, Fane AG (2011) Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives. J Membr Sci 380:114–123. https://doi.org/10.1016/j.memsci.2011.06.041

    Article  CAS  Google Scholar 

  42. Kaltalı G, Kalıpçılar H, Çulfaz-Emecen PZ (2015) Effect of three different PEO-containing additives on the fouling behavior of PES-based ultrafiltration membranes. Sep Purif Technol 150:21–28. https://doi.org/10.1016/j.seppur.2015.06.034

    Article  CAS  Google Scholar 

  43. Liu C, Yun Y, Wu N, Hua Y, Li C (2013) Effects of amphiphilic additive Pluronic F127 on performance of poly(ether sulfone) ultrafiltration membrane. Desalin Water Treat 51:3776–3785. https://doi.org/10.1080/19443994.2013.781570

    Article  CAS  Google Scholar 

  44. Wang Y, Su Y, Sun Q, Ma X, Ma X, Jiang Z (2006) Improved permeation performance of Pluronic F127–polyethersulfone blend ultrafiltration membranes. J Membr Sci 282:44–51. https://doi.org/10.1016/j.memsci.2006.05.005

    Article  CAS  Google Scholar 

  45. Dmitrenko ME, Penkova AV, Atta RR, Zolotarev AA, Plisko TV, Mazur AS, Solovyev ND, Ermakov SS (2019) The development and study of novel membrane materials based on polyphenylene isophthalamide–Pluronic F127 composite. Mater Des 165:107596–107608. https://doi.org/10.1016/j.matdes.2019.107596

    Article  CAS  Google Scholar 

  46. Lv C, Su Y, Wang Y, Ma X, Sun Q, Jiang Z (2007) Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127. J Membr Sci 294:68–74. https://doi.org/10.1016/j.memsci.2007.02.011

    Article  CAS  Google Scholar 

  47. Plisko TV, Penkova AV, Burts KS et al (2019) Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. J Membr Sci 580:336–349. https://doi.org/10.1016/j.memsci.2019.03.028

    Article  CAS  Google Scholar 

  48. Rahman NA, Maruyama T, Matsuyama H (2008) Performance of polyethersulfone/tetronic-1307 hollow fiber membrane for drinking water production. J Appl Sci Environ Sanit 3:1–7

    CAS  Google Scholar 

  49. Venault A, Chang Y, Wang DM, Bouyer D, Higuchi A, Lai JY (2012) PEGylation of anti-biofouling polysulfone membranes via liquid-and vapor-induced phase separation processing. J Membr Sci 403:47–57. https://doi.org/10.1016/j.memsci.2012.02.019

    Article  CAS  Google Scholar 

  50. Pacharasakoolchai S, Chinpa W (2014) Improved permeation performance and fouling-resistance of poly(vinyl chloride)/polycarbonate blend membrane with added Pluronic F127. Songklanak J Sci Technol 36:209–215

    CAS  Google Scholar 

  51. Liu B, Chen C, Zhang W, Crittenden J, Chen Y (2012) Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: effect of additives on properties and performance. Desalination 307:26–33. https://doi.org/10.1016/j.desal.2012.07.036

    Article  CAS  Google Scholar 

  52. Liu J, Su Y, Peng J, Zhao X, Zhang Y, Dong Y, Jiang Z (2012) Preparation and performance of antifouling PVC/CPVC blend ultrafiltration membranes. Ind Eng Chem Res 51:8308–8314. https://doi.org/10.1021/ie300878f

    Article  CAS  Google Scholar 

  53. Kanagaraj P, Neelakandan S, Nagendran A, Rana D, Matsuura T, Shalini M (2015) Removal of BSA and HA contaminants from aqueous solution using amphiphilic triblock copolymer modified poly(ether imide) UF membrane and their fouling behaviors. Ind Eng Chem Res 54:11628–11634. https://doi.org/10.1021/acs.iecr.5b03290

    Article  CAS  Google Scholar 

  54. Amanda A, Kulprathipanja A, Toennesen M, Mallapragada SK (2000) Semicrystalline poly(vinyl alcohol) ultrafiltration membranes for bioseparations. J Membr Sci 176:87–95. https://doi.org/10.1016/S0376-7388(00)00433-6

    Article  CAS  Google Scholar 

  55. Tager AA, Botvinnik GO (1974) The activation parameters of viscous flow and the structure of concentrated polymer solutions. Polym Sci USSR 16:1483–1488. https://doi.org/10.1016/0032-3950(74)90411-0

    Article  Google Scholar 

  56. Tager AA (1974) Effect of solvent quality on the viscosity of flexible-chain and rigid-chain polymers in a wide range of concentrations. Rheol Acta 13:323–332. https://doi.org/10.1007/BF01520895

    Article  CAS  Google Scholar 

  57. Lou Y, Lei Q, Wu G (2019) Research on polymer viscous flow activation energy and non-newtonian index model based on feature size. Adv Polym Tech. https://doi.org/10.1155/2019/1070427

    Article  Google Scholar 

  58. Plisko TV, Liubimova AS, Bildyukevich AV et al (2018) Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. J Membr Sci 551:20–36. https://doi.org/10.1016/j.memsci.2018.01.015

    Article  CAS  Google Scholar 

  59. Alexandridis P, Yang L (2000) Micellization of polyoxyalkylene block copolymers in formamide. Macromolecules 33:3382–3391. https://doi.org/10.1021/ma990862o

    Article  CAS  Google Scholar 

  60. Park C, Kim H, Hong S, Choi SI (2006) Variation and prediction of membrane fouling index under various feed water characteristics. J Membr Sci 284:248–254. https://doi.org/10.1016/j.memsci.2006.07.036

    Article  CAS  Google Scholar 

  61. Farrokhara M, Dorosti F (2020) New high permeable polysulfone/ionic liquid membrane for gas separation. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.04.002

    Article  Google Scholar 

  62. Singh R, Sinha MK, Purkait MK (2020) Stimuli responsive mixed matrix polysulfone ultrafiltration membrane for humic acid and photocatalytic dye removal applications. Sep Purif Technol 250:117247. https://doi.org/10.1016/j.seppur.2020.117247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Plisko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burts, K.S., Plisko, T.V., Bildyukevich, A.V. et al. Modification of polysulfone ultrafiltration membranes using block copolymer Pluronic F127. Polym. Bull. 78, 6549–6576 (2021). https://doi.org/10.1007/s00289-020-03437-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03437-4

Keywords

Navigation