Skip to main content
Log in

Preparation and properties of micro- and nanocomposites composed of a water-soluble nylon and aramid fibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A commercial 20 wt% solid paste of microfibrillated aramid fibers (MFAs) containing water was treated with potassium hydroxide in dimethyl sulfoxide to produce aramid nanofibers (ANFs). Nanocomposites composed of a water-soluble nylon (A-90, amine-modified poly(ɛ-caprolactam)) and ANFs with fiber contents of 0–5 phr (i.e., parts per hundred resin) were prepared by a casting method of the resin/fiber dispersion in water. A-90/MFA microcomposites were also prepared by the same method for comparison. The FE-SEM analysis revealed that ANFs are much finer than MFAs, and both the fibers are homogeneously dispersed in all the composites. The glass transition and maximum thermal decomposition temperatures of A-90/ANF and A-90/MFA composites were higher than those of A-90. The tensile strength, tensile modulus and elongation at break for A-90/ANF and A-90/MFA composites increased with increasing fiber content. When tensile properties of A-90/ANF and A-90/MFA composites with the same fiber content were compared, A-90/ANF nanocomposites exhibited much better tensile properties than A-90/MFA composites did. Especially, the tensile toughness of A-90/ANF 5 phr was about three times higher than that of A-90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: A critical review. Nano Mater Sci 1:2–30. https://doi.org/10.1016/j.nanoms.2019.02.006

    Article  Google Scholar 

  2. Vengatesan MR, Mittal V (2016) Nanoparticle- and nanofiber-based polymer nanocomposites: An Overview. In: Mittal V (ed) Spherical and fibrous composites. Wiley-VCH, Weinheim, pp 1–38

    Google Scholar 

  3. Karak N (2019) Nanomaterials and polymer nanocomposites. Elsevier, Amsterdam

    Google Scholar 

  4. Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Gałęski A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008

    Article  CAS  Google Scholar 

  5. Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: A guide for choosing partners and how to incorporate them. Polymers 10:517. https://doi.org/10.3390/polym10050517

    Article  CAS  PubMed Central  Google Scholar 

  6. Kargarzadeh K, Mariano I, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043

    Article  CAS  Google Scholar 

  7. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  8. Duan B, Hung Y, Lu A, Zhang L (2018) Recent advances in chitin based materials constructed via physical methods. Prog Polym Sci 82:1–33. https://doi.org/10.1016/j.progpolymsci.2018.04.001

    Article  CAS  Google Scholar 

  9. Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Leo T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation. ACS Sustainable Chem Eng 4:1385–4395. https://doi.org/10.1021/acssuschemeng.6b00981

    Article  CAS  Google Scholar 

  10. Shibata M, Enjoji M, Sakazume K, Ifuku S (2016) Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan. Carbohydr Polym 144:89–97. https://doi.org/10.1016/j.carbpol.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  11. Ifuku S (2015). In: Pandey JK, Takagi H, Nakagaito AN, Kim HJ (eds) Handbook of polymer nanocomposites Processing, performance and application. Springer, Heidelberg

    Google Scholar 

  12. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308. https://doi.org/10.1039/c2nr30383c

    Article  CAS  PubMed  Google Scholar 

  13. Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55. https://doi.org/10.1016/j.jiec.2008.07.008

    Article  CAS  Google Scholar 

  14. Salaberria AM, Fernandes SCM, Diaz RH, Labidi J (2015) Processing of α-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291. https://doi.org/10.1016/j.carbpol.2014.04.047

    Article  CAS  PubMed  Google Scholar 

  15. WSP Marketing Dept., Daicel FineChem Ltd. (Tokyo, Japan), Products: CELISH, TIARA, https://www.daicelfinechem.jp/en/products/wsp_celish.html (accessed 29 January, 2020).

  16. Yang M, Cao K, Sui L, Qi Y, Zhu J, Waas A, Arruda EM, Kieffer J, Thouless MD, Kotov KA (2011) Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 5:6945–6954. https://doi.org/10.1021/nn2014003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuang Q, Zhang D, Yu JC, Chang YW, Yue M, Hou Y, Yang M (2015) Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers. J Phys Chem C 119:27467–27477. https://doi.org/10.1021/acs.jpcc.5b08856

    Article  CAS  Google Scholar 

  18. Yang M, Cao K, Yeom B, Thouless MD, Waas A, Arruda EM, Kotov NA (2015) Aramide-nanofiber-reinforced transparent nanocomposites. J Compos Mater. https://doi.org/10.1177/0021998315579230

    Article  Google Scholar 

  19. Guan Y, Li W, Zhang Y, Shi Z, Tan J, Wang F, Wang Y (2017) Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos Sci Technol 144:193–201. https://doi.org/10.1016/j.compscitech.2017.03.010

    Article  CAS  Google Scholar 

  20. Lin J, Bang SH, Malakooti MH, Sodano HA (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interfaces 9:11167–11175. https://doi.org/10.1021/acsami.7b01488

    Article  CAS  PubMed  Google Scholar 

  21. Polymer Products, Toray Industries Inc. (Tokyo, Japan), Coating resins: AQ-nylon, https://www.toray.jp/chemical/en/polymer/pol_001.html (accessed 29 January, 2020).

  22. Takayanagi M, Kotayose T (1981) N-Substituted poly(p-phenylene terephthalamide). J Polym Sci Part A Polym Chem 19:1133–1145. https://doi.org/10.1002/pol.1981.170190510

    Article  CAS  Google Scholar 

  23. Burch RR, Sweeny W, Schmidt HW, Kim YH (1990) Preparation of aromatic polyamide polyanions—A novel processing strategy for aromatic polyamides. Macromolecules 23:1065–1072. https://doi.org/10.1021/ma00206a026

    Article  CAS  Google Scholar 

  24. Yang B, Wang L, Zhang M, Luo J, Ding X (2019) Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13:7886–7897. https://doi.org/10.1021/acsnano.9b02258

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi R, Shibata M (2019) Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. J Polym Res 26:168. https://doi.org/10.1007/s10965-019-1834-1

    Article  CAS  Google Scholar 

  26. Shibita A, Takase H, Shibata M (2014) Semi-interpenetrating polymer networks composed of poly(L-lactide) and diisocyanate-bridged 4-arm star-shaped ɛ-caprolactone oligomers. Polymer 55:5407–5416. https://doi.org/10.1016/j.polymer.2014.08.074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Ryusuke Osada of Material Analysis Center of our university for assisting in measuring FE-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, R., Shibata, M. Preparation and properties of micro- and nanocomposites composed of a water-soluble nylon and aramid fibers. Polym. Bull. 78, 6291–6304 (2021). https://doi.org/10.1007/s00289-020-03434-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03434-7

Keywords

Navigation