Skip to main content
Log in

P3HT colloid stability study and its application in the degradation of methylene blue dye under UV radiation conditions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work evaluates the stability of poly(3-HexylThiophene) (P3HT) polymer when exposed to Ultraviolet (UV) radiation in both film and colloid form. The P3HT colloid form showed improved stability in comparison to the film form: P3HT film was stable for 24 h of UV radiation, while P3HT colloids were stable at different times (24, 52, 120 h). The concentration was an important parameter for the stability of the P3HT colloids, 0.2% (w/v) promoting a better interaction between the adjacent particles and the surfactant plays an important role as a radiation filter and as an adsorbed material.In addition, P3HT colloids were tested as catalytic material involved in the degradation process of Methylene Blue dye, achieving a catalytic efficiency within a range of 80–100%. The photostability of P3HT colloids and the degradation studies derive from absorption spectra. The results evidence advantages in the use of these particles, since the approach presented offers an alternative in additive free catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yimin D, Jiaqia Z, Danyang L, Lanli N, Liling Z, Yi Z, Xiaohong Z (2018) Preparation of Congo red functionalized Fe3O4@SiO2 nanoparticle and its application for the removal of methylene blue. Colloi Surf A 550:90–98. https://doi.org/10.1016/j.colsurfa.2018.04.033

    Article  CAS  Google Scholar 

  2. Bhattacharjee A, Ahmaruzzaman M (2015) Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via green route) under direct sunlight. RSC Adv 5:66122–66133. https://doi.org/10.1039/C5RA07578E

    Article  CAS  Google Scholar 

  3. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods An updated review. ApplCatal B: Environ 166–167:603–643. https://doi.org/10.1016/j.apcatb.2014.11.016

    Article  CAS  Google Scholar 

  4. Hao C, Wang J, Cheng Q, Bai Y, Wang Xi, Yang Y (2017) Anionic surfactants-assisted solution-phase synthesis of ZnO with improved photocatalytic performance. J Photoch-Photobiol A-Chem 332:384–390. https://doi.org/10.1016/j.jphotochem.2016.09.013

    Article  CAS  Google Scholar 

  5. Gao J, Wei W, Shi M, Han H, Lu J, Xie J (2016) A controlled solvothermal approach to synthesize nanocrystalline iron oxide for congo red adsorptive removal from aqueous solutions. J Mater Sci 51:4481–4494. https://doi.org/10.1007/s10853-016-9760-7

    Article  CAS  Google Scholar 

  6. MuhdJulkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalyticdecolorization of synthetic dyes. Sci World J 2014:692307. https://doi.org/10.1155/2014/692307

    Article  CAS  Google Scholar 

  7. Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Polythiophenenanocomposites for photodegradation applications: Past, present and future. J Saudi ChemSoc 19:494–504. https://doi.org/10.1016/j.jscs.2015.06.004

    Article  Google Scholar 

  8. B. Rathnayake, A. Heponiemi, M. Huovinen, S. Ojala, M. Pirilä, J. Loikkanen, S. Azalim, M. Saouabe, R. Brahmi, K. Vähäkangas, U. Lassi, R. L. Keiski (2019) Photocatalysis and catalytic wet air oxidation: Degradation and toxicity of bisphenol a containing wastewater, Environmental Technology 1–56 https://doi.org/10.1080/09593330.2019.1604817

  9. Deng Y, Zhao R (2015) Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollution Rep 1:167–176. https://doi.org/10.1007/s40726015-0015-z

    Article  CAS  Google Scholar 

  10. Montoya LAR, Montoya VH, Moran MAM, Rincón JJ, Cervantes FJ (2015) Decolorization of dyes with different molecular properties using free and immobilized laccases from trametesversicolor. J MolLiq 212:30–37. https://doi.org/10.1016/j.molliq.2015.08.040

    Article  CAS  Google Scholar 

  11. Kanamarlapudi SLRK, Chintalpudi VK, Muddada S (2018) Application of biosorption for removal of heavy metals from wastewater. Biosorption 4:69–116. https://doi.org/10.5772/intechopen.77315

    Article  Google Scholar 

  12. Wongli H, Goodwin CM, Beebe TP, Wongnawa S, Sirimahachai U (2017) AgI-BiYO3photocatalyst: Synthesis, characterization, and its photocatalytic degradation of dye. Mater ChemPhys 202:120–126. https://doi.org/10.1016/j.matchemphys.2017.09.002

    Article  CAS  Google Scholar 

  13. Jiang L, Zhang J, Wang W, Yang H, Reisdorffer F, Nguyen TP, Dan Y (2015) Optical properties of poly(3-hexylthiophene) and interfacial charge transfer between poly(3-hexylthiophene) and titanium dioxide in composites. J Lumin 159:88–92. https://doi.org/10.1016/j.jlumin.2014.11.002

    Article  CAS  Google Scholar 

  14. Khatamian M, Fazayeli M, Divband B (2014) Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocompositos. Mater SciSemicondProc 26:540–547. https://doi.org/10.3390/ma12081195

    Article  CAS  Google Scholar 

  15. Jana B, Bhattacharyya S, Patra A (2015) Conjugated polymer P3HT–Au hybrid nanostructures for enhancing photocatalytic activity. PhysChemChemPhys 17:15392–15399. https://doi.org/10.1039/C5CP01769F

    Article  CAS  Google Scholar 

  16. Raut P, Swanson N, Kulkarni A, Pugh C, Jana SC (2018) Exploiting arene-perfluoroarene interactions for dispersion of carbon black in rubber compounds. Polymer 148:247–258. https://doi.org/10.1016/j.polymer.2018.06.025

    Article  CAS  Google Scholar 

  17. Wheeler SE (2013) Understanding substituent effects in noncovalent interactions involving aromatic rings. AccChem Res 46:1029–1038. https://doi.org/10.1016/j.jconrel.2018.12.014

    Article  CAS  Google Scholar 

  18. Zhuanga WR, Wang Y, Cui PF, Xingab L, Lee J, Kim D, Jiang HL, Oh YK (2019) Applications of π-π stacking interactions in the design of drug-delivery systems. J Controlled Release 294:311–326. https://doi.org/10.1016/j.jconrel.2018.12.014

    Article  CAS  Google Scholar 

  19. Deng JH, Luo J, Mao YL, Lai S, Gong YN, Zhong DC, Lu TB (2020) π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. SciAdv 6:9976–9983. https://doi.org/10.1126/sciadv.aax9976

    Article  CAS  Google Scholar 

  20. Kilbinger AFM, Grubbs RH (2002) Arene-perfluoroarene interactions as physical cross-links for hydrogel formation. AngewChemInt Ed 41:1563–1566. https://doi.org/10.1002/1521-3773(20020503)41:9%3c1563::AID-ANIE1563%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  21. Dai C, Nguyen P, Marder TB, Scott AJ, Clegg W, Viney C (1999) Control of single crystal structure and liquid crystal phase behaviour via arene e perfluoroarene interactions. ChemCommun 24:2493–2494. https://doi.org/10.1039/A906199A

    Article  Google Scholar 

  22. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941. https://doi.org/10.1039/C5TA02707A

    Article  CAS  Google Scholar 

  23. Yang L, Zhang Z, Nie G, Wang C, Lu X (2015) Fabrication of conducting polymer/noble metal composite nanorings and their enhanced catalytic properties. J Mater Chem A 3:83–86. https://doi.org/10.1039/C4TA05220J

    Article  CAS  Google Scholar 

  24. de Al C, Leon Q, Chen NB, Palaganas JO, Palaganas J, Manapat RC (2016) Advincula, High Performance Polymer Nanocomposites for Additive Manufacturing Applications. React FunctPolym 103:141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  CAS  Google Scholar 

  25. Raut P, Li S, Chen YM, Zhu Y, Jana SC (2019) Strong and flexible composite solid polymer electrolyte membranes for Li-Ion batteries. ACS Omega 4:18203–18209. https://doi.org/10.1021/acsomega.9b00885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raut P, Liang W, Chen YM, Zhu Y, Jana SC (2019) Syndiotactic polystyrene-based ionogel membranes for high temperature electrochemical applications. ACS Appl Mater Interfaces 4:18203–18209. https://doi.org/10.1021/acsomega.9b00885

    Article  CAS  Google Scholar 

  27. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Powers Sources 196:1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  28. Berger PR, Kim M (2018) Polymer solar cells: P3HT: PCBM and beyond. J Renew Sustain Ener 10:013508–01–013508–26. https://doi.org/10.1063/1.5012992

    Article  CAS  Google Scholar 

  29. Bannock JH, Treat ND, Chabinyc M, Stingelin N, Heeney M, de Mello J (2016) The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. Sci Rep 6:23651–32360. https://doi.org/10.1038/srep23651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim E, Peterson KA, Su GM, Chabinyc ML (2018) Thermoelectric properties of poly(3-hexylthiophene) (P3HT) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem Mater 30:998–1010. https://doi.org/10.1021/acs.chemmater.7b04849

    Article  CAS  Google Scholar 

  31. González-Juárez E, Güizado-Rodríguez M, Barba V, Melgoza-Ramírez M, Rodríguez M, Ramos-Ortíz G, Maldonado JL (2016) Polythiophenes based on pyrene as pendant group: Synthesis, structural characterization and luminescent properties. J MolStruct 1103:25–34. https://doi.org/10.1016/j.molstruc.2015.09.011

    Article  CAS  Google Scholar 

  32. Kaeser A, Schenning APHJ (2010) Fluorescent nanoparticles based on self-assembled π-conjugated systems. Adv Mater 22:2985–2997. https://doi.org/10.1002/adma.201000427

    Article  CAS  PubMed  Google Scholar 

  33. Javadian S, Kakemam J (2017) Intermicellar interaction in surfactant solutions; a review study. J MolLiq 242:115–128. https://doi.org/10.1016/j.molliq.2017.06.117

    Article  CAS  Google Scholar 

  34. Millstone JE, Kavulak DFK, Woo CH, Holcombe TW, Westling EJ, Briseno AL, Toney MF, Frecher JMJ (2010) Synthesis, properties, and electronics applications of size-controlled poly(3-hexylthiophene) nanoparticles. Lagmiur 26:13056–13061. https://doi.org/10.1021/la1022938

    Article  CAS  Google Scholar 

  35. Dupuis A, Wong-Wah-Chung P, Rivaton A, Gardette JL (2012) Influence of the microstructure on the photooxidative degradation of poly (3-hexylthiophene). PolymDegrad Stab 97:366–368. https://doi.org/10.1016/j.polymdegradstab.2011.12.012

    Article  CAS  Google Scholar 

  36. Ratha R, Goutam PJ, Iyer PK (2014) Photo stability enhancement of Poly(3-hexylthiophene)-PCBM nanocomposites by addition of multi walled carbon nanotubes under ambient conditions. Org Electron 15:1650–1656. https://doi.org/10.1016/j.orgel.2014.03.015

    Article  CAS  Google Scholar 

  37. Mizukado J, Sato H, Chen L, Suzuki Y, Yamane S, Aoyama Y, Yoshida Y, Suda H (2015) High-resolution MALDI-TOF MS study on analysis of low-molecular-weight products from photo-oxidation of poly(3-hexylthiophene). J Mass Spectrom 50:1006–1012. https://doi.org/10.1002/jms.3614

    Article  CAS  PubMed  Google Scholar 

  38. Manceau M, Gaume J, Rivaton A, Gardette JL, Monier G, Bideux L (2010) Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy. Thin Solid Films 518:7113–7118. https://doi.org/10.1016/j.tsf.2010.06.042

    Article  CAS  Google Scholar 

  39. Manceau M, Rivaton A, Gardette JL, Guillerez S, Lemaıtre N (2009) The mechanism of photo and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. PolymDegrad Stab 94:898–907. https://doi.org/10.1016/j.polymdegradstab.2009.03.005

    Article  CAS  Google Scholar 

  40. Sai N, Leung K, Zadord J, Henkelman G (2014) First Principles Study of Photo-oxidation Degradation Mechanisms in P3HT of Organic Solar Cells. PhysChemChemPhys 16:8092–8099. https://doi.org/10.1039/C4CP00146J

    Article  CAS  Google Scholar 

  41. S Satapathi, L Li, R Anadakathir, LA Samuelson, J Kumar (2011) Sensory Response and Two-Photon-Fluorescence Study of Regioregular Polythiophene Nanoparticles. J Macromol Sci Part A Pure Appl Chem, 48, 1049–1054 https://doi.org/10.1080/10601325.2011.620452

  42. Tan B, Li Y, Palacios MF, Therrien J, Sobkowicz MJ (2016) Effect of surfactant conjugation on structure and properties of poly(3-hexylthiophene) colloids and field effect transistors. Colloid Surf A 488:7–14. https://doi.org/10.1016/j.colsurfa.2015.10.002

    Article  CAS  Google Scholar 

  43. Tammina SK, Mandal BK, Kadiyala NK (2018) Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ Nanotechnol, Monitoring Manag 10:339–350. https://doi.org/10.1016/j.enmm.2018.07.006

    Article  Google Scholar 

  44. Flores FM, Undabeytia T, Morillo E, Sánchez RM (2017) Technological applications of organo-montmorillonites in the removal of pyrimethanil from water: adsorption/desorption and flocculation studies. Environ SciPollut Res 16:14463–14476. https://doi.org/10.1007/s11356-017-9016-3

    Article  CAS  Google Scholar 

  45. Farajia M, Poursalehia R, Aliofkhazraeia M (2015) The Effect of Surfactant on Colloidal Stability, Oxidation and Optical Properties of Aluminum Nanoparticles Prepared via Dc Arc Discharge in Water. Procedia Mater Sci 11:684–688. https://doi.org/10.1016/j.mspro.2015.11.029

    Article  CAS  Google Scholar 

  46. Que W, Jiang L, Wang C, Liu Y, Zeng Z, Wang X, Ning Q, Liu S, Zhang P, Liu S (2018) Influence of sodium dodecyl sulfate coating on adsorption of methylene blue by biochar from aqueous solution. J Envioron Sic 70:166–174. https://doi.org/10.1016/j.jes.2017.11.027

    Article  Google Scholar 

  47. Huang H, Leung DYC, Kwong PCW, Xiong J, Zhang L (2013) Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation. Catal Today 201:189–194. https://doi.org/10.1016/j.cattod.2012.06.022

    Article  CAS  Google Scholar 

  48. Yuenyongsuwan J, Nithiyakorn N, Sabkird P, O’Rear EA, Pongprayoon T (2018) Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles. Mater ChemPhys 214:330–336. https://doi.org/10.1016/j.matchemphys.2018.04.111

    Article  CAS  Google Scholar 

  49. Alphas Jebasingh J, Stanley R, ManishaVidyavathy S (2010) Sol-gel preparation of surfactants assisted titania for solar photocatalysis. Mater Lett 279:128460–128463. https://doi.org/10.1016/j.matlet.2020.128460

    Article  CAS  Google Scholar 

  50. Flores SE, Luévanos A, Perez CM, García LA, Flores TE (2019) Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. Bull Span Soc Ceram Glass. https://doi.org/10.1016/j.bsecv.2019.10.003

    Article  Google Scholar 

  51. Liu YF, Zhu YY, Xu J, Bai XJ, Zong RL, Zhu YF et al (2013) Degradation and mineralization mechanism of phenol by BiPO4photocatalysis assisted with H2O2. Appl. Catal. B: Environ. 142:561–567. https://doi.org/10.1016/j.apcatb.2013.05.049

    Article  CAS  Google Scholar 

  52. Shi L, Liang L, Ma J, Meng YN, Zhong SF, Wang FX, Sun JM (2014) Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram Inter 40:3495–3502. https://doi.org/10.1016/j.ceramint.2013.09.080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of Pharmaceutical Technology-UAEM and CIQ-UAEM for the analysis of the particle size and optical respectively. E. González-Juárez indebted to PRODEP program for the scholarship support (Grant No. DSA/103.5/16/409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edgar González-Juárez or Edgar García-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Juárez, E., García-Hernández, E., Arrieta-González, C.D. et al. P3HT colloid stability study and its application in the degradation of methylene blue dye under UV radiation conditions. Polym. Bull. 78, 6455–6472 (2021). https://doi.org/10.1007/s00289-020-03415-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03415-w

Keywords

Navigation