Skip to main content
Log in

Properties of polyethylcyanoacrylate/modified Mt composites with highly exfoliated montmorillonite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The surface mineral modification of montmorillonite (Mt) layers was carried out by removing some of the exchangeable cations and anions (salts) using dimethylformamide as a chelating agent. The rest unremoved exchangeable cations were balanced by the permanent negative charges in the Mt layers. The modified Mt layers were characterized by X-ray fluorescence, high-resolution scanning electron microscopy (HR-SEM), dynamic light scattering (DLS), and high-resolution transmission electron microscopy. The completely exfoliated modified Mt layers were composed of polyethylcyanoacrylate (PECA) at different ratios 1, 3, 5, 7, 10, and 15% (wt/wt). The obtained composites were investigated by molar mass, FTIR, small-angle X-ray diffraction, wide-angle X-ray diffraction, HR-SEM, DLS, and TGA. The results showed that the exchangeable cations and anions (salts) were removed from the surfaces of Mt layers, and all the percentages of loaded Mt layers were completely exfoliated in the bulk of PECA. TEM morphology exhibited clearly separated modified Mt layers due to removing the salts. SEM morphology showed highly exfoliated modified Mt layers in PECA bulk. TGA and nanoindentation data were showed increases in both thermal stability and mechanical properties of prepared composites by increasing the ratios of modified Mt layers in the bulk of PECA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yarahmadi N, Jakubowicz I, Hjertberg T (2010) Development of poly(vinyl chloride)/montmorillonite nanocomposites using chelating agents. Polym Degrad Stab 95(2):132–137. https://doi.org/10.1016/j.polymdegradstab.2009.11.043

    Article  CAS  Google Scholar 

  2. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338

    Article  CAS  Google Scholar 

  3. Liff SM, Kumar N, McKinley GH (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6(1):76–83. https://doi.org/10.1038/nmat1798

    Article  CAS  PubMed  Google Scholar 

  4. Metwally SS, Ayoub RR (2016) Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Appl Clay Sci 126:33–40. https://doi.org/10.1016/j.clay.2016.02.021

    Article  CAS  Google Scholar 

  5. Petersen H, Jakubowicz I, Enebro J, Yarahmadi N (2015) Organic modification of montmorillonite for application in plasticized PVC nanocomposites. Appl Clay Sci 107:78–84. https://doi.org/10.1016/j.clay.2015.01.006

    Article  CAS  Google Scholar 

  6. Shen Y, Yu X, Wang Y (2019) Facile synthesis of modified rectorite (M-REC) for effective removal of anionic dye from water. J Mol Liq 278:12–18. https://doi.org/10.1016/j.molliq.2019.01.045

    Article  CAS  Google Scholar 

  7. Santos TT, Almeida TG, Morais DDS, Magalhães FD, Guedes RM, Canedo EL, Carvalho LH (2019) Effect of filler type on properties of PBAT/organoclay nanocomposites. Polym Bull 77(2):901–917. https://doi.org/10.1007/s00289-019-02778-z

    Article  CAS  Google Scholar 

  8. Takahashi K, Ishii R, Nakamura T, Suzuki A, Ebina T, Yoshida M, Kubota M, Nge TT, Yamada T (2017) Flexible electronic substrate film fabricated using natural clay and wood components with cross-linking polymer. Adv Mater 29(17):1606512. https://doi.org/10.1002/adma.201606512

    Article  CAS  Google Scholar 

  9. Júnior LPC, Silva DBDS, de Aguiar MF, de Melo CP, Alves KG (2019) Preparation and characterization of polypyrrole/organophilic montmorillonite nanofibers obtained by electrospinning. J Mol Liq 275:452–462. https://doi.org/10.1016/j.molliq.2018.11.084

    Article  CAS  Google Scholar 

  10. Silva DBDS, Júnior LP, de Aguiar MF, de Melo CP, Alves KG (2018) Preparation and characterization of nanofibers of polyvinyl alcohol/polyaniline-montmorillonite clay. J Mol Liq 272:1070–1076. https://doi.org/10.1016/j.molliq.2018.10.087

    Article  CAS  Google Scholar 

  11. Gong F, Feng M, Zhao C, Zhang S, Yang M (2004) Thermal properties of poly (vinyl chloride)/montmorillonite nanocomposites. Polym Degrad Stab 84(2):289–294

    Article  CAS  Google Scholar 

  12. Tajbakhsh M, Bazzar M, Ramzanian SF, Tajbakhsh M (2014) Sulfonated nanoClay minerals as a recyclable eco-friendly catalyst for the synthesis of quinoxaline derivatives in green media. Appl Clay Sci 88–89:178–185. https://doi.org/10.1016/j.clay.2013.12.023

    Article  CAS  Google Scholar 

  13. Yalcinkaya F, Yalcinkaya B, Jirsak O (2015) Influence of salts on electrospinning of aqueous and nonaqueous polymer solutions. Journal of Nanomaterials 2015:1–12. https://doi.org/10.1155/2015/134251

    Article  CAS  Google Scholar 

  14. Phadke MA, Kulkarni SS, Karode SK, Musale DA (2005) Poly (acrylonitrile) ultrafiltration membranes II Membrane morphology and permeation characteristics. J PolymSci Part B: Polym Phys 43(15):2074–2085. https://doi.org/10.1002/polb.20494

    Article  CAS  Google Scholar 

  15. Qiao H, Cai Y, Chen F, Wei Q, Weng F, Huang F, Song L, Hu Y, Gao W (2010) Influences of organic-modified Fe-montmorillonite on structure, morphology and properties of polyacrylonitrile nanocomposite fibers. Fibers Polym 10(6):750–755. https://doi.org/10.1007/s12221-009-0750-0

    Article  CAS  Google Scholar 

  16. Tatiana Ș, Ryan B, Ivanković A, Murphy N (2020) Dynamic mechanical analysis of carbon black filled, elastomer-toughened ethyl cyanoacrylate adhesive bulk films. Int J Adhes Adhes 101:102630. https://doi.org/10.1016/j.ijadhadh.2020.102630

    Article  CAS  Google Scholar 

  17. Luo Z, Liu K, Guo M, Lian Z, Yan H, Wei W, Zhang B (2017) Modification of ethyl 2-cyanoacrylate using silica and nitrile butadiene rubber to achieve high thixotropy and low internal stress. J Adhes Sci Technol 32(10):1128–1141. https://doi.org/10.1080/01694243.2017.1400801

    Article  CAS  Google Scholar 

  18. Xu J, Zhang L, Chen G (2013) Fabrication of graphene/poly(ethyl 2-cyanoacrylate) composite electrode for amperometric detection in capillary electrophoresis. Sens Actuators B: Chem 182:689–695. https://doi.org/10.1016/j.snb.2013.03.109

    Article  CAS  Google Scholar 

  19. Hansen EL, Hemmen H, Fonseca DM, Coutant C, Knudsen KD, Plivelic TS, Bonn D, Fossum JO (2012) Swelling transition of a clay induced by heating. Sci Rep 2:618. https://doi.org/10.1038/srep00618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279):339–343. https://doi.org/10.1038/nature08693

    Article  CAS  PubMed  Google Scholar 

  21. Zhuang G, Zhang Z, Guo J, Liao L, Zhao J (2015) A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Appl Clay Sci 104:18–26. https://doi.org/10.1016/j.clay.2014.11.023

    Article  CAS  Google Scholar 

  22. Schoonheydt RA, Johnston CT, Bergaya F (2018) Clay Miner Surf 9:1–21. https://doi.org/10.1016/b978-0-08-102432-4.00001-9

    Article  CAS  Google Scholar 

  23. Cheng K, Heidari Z (2018) A new method for quantifying cation exchange capacity in clay minerals. Appl Clay Sci 161:444–455. https://doi.org/10.1016/j.clay.2018.05.006

    Article  CAS  Google Scholar 

  24. Shi J, Liu H, Lou Z, Zhang Y, Meng Y, Zeng Q, Yang M (2013) Effect of interlayer counterions on the structures of dry montmorillonites with Si4+/Al3+ substitution. Comput Mater Sci 69:95–99. https://doi.org/10.1016/j.commatsci.2012.11.019

    Article  CAS  Google Scholar 

  25. Misra RDK, Yuan Q, Chen J, Yang Y (2010) Hierarchical structures and phase nucleation and growth during pressure-induced crystallization of polypropylene containing dispersion of nanoclay: the impact on physical and mechanical properties. Mater Sci Eng, A 527(9):2163–2181. https://doi.org/10.1016/j.msea.2009.11.023

    Article  CAS  Google Scholar 

  26. Zawrah M, Khattab R, Saad E, Gado R (2014) Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim Acta Part A Mol Biomol Spectrosc 122:616–623

    Article  CAS  Google Scholar 

  27. Wu LM, Tong DS, Zhao LZ, Yu WH, Zhou CH, Wang H (2014) Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Appl Clay Sci 95:74–82

    Article  CAS  Google Scholar 

  28. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31(1):1–10

    Article  Google Scholar 

  29. Tas AC (2012) Calcium metal to synthesize amorphous or cryptocrystalline calcium phosphates. Mater Sci Eng, C 32(5):1097–1106. https://doi.org/10.1016/j.msec.2012.01.024

    Article  CAS  Google Scholar 

  30. Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37(9):892–899. https://doi.org/10.1002/jrs.1518

    Article  CAS  Google Scholar 

  31. Ma Y, Zhu J, He H, Yuan P, Shen W, Liu D (2010) Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochim Acta Part A Mol Biomol Spectrosc 76(2):122–129

    Article  Google Scholar 

  32. Bounabi L, Mokhnachi NB, Haddadine N, Ouazib F, Barille R (2016) Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 33:58–65. https://doi.org/10.1016/j.jddst.2016.03.010

    Article  CAS  Google Scholar 

  33. Ma L, Zhu J, He H, Xi Y, Zhu R, Tao Q, Liu D (2015) Thermal analysis evidence for the location of zwitterionic surfactant on clay minerals. Appl Clay Sci 112–113:62–67. https://doi.org/10.1016/j.clay.2015.04.021

    Article  CAS  Google Scholar 

  34. Derakhshani E, Naghizadeh A (2018) Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles. J Mol Liq 259:76–81. https://doi.org/10.1016/j.molliq.2018.03.014

    Article  CAS  Google Scholar 

  35. Bandyopadhyay J, Sinha Ray S (2010) The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer 51(6):1437–1449. https://doi.org/10.1016/j.polymer.2010.01.029

    Article  CAS  Google Scholar 

  36. Carli LN, Bianchi O, Machado G, Crespo JS, Mauler RS (2013) Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering. Mater Sci Eng C Mater Biol Appl 33(2):932–937. https://doi.org/10.1016/j.msec.2012.11.023

    Article  CAS  PubMed  Google Scholar 

  37. Yu WH, Ren QQ, Tong DS, Zhou CH, Wang H (2014) Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Appl Clay Sci 97–98:222–234. https://doi.org/10.1016/j.clay.2014.06.007

    Article  CAS  Google Scholar 

  38. Zhirong L, Azhar Uddin M, Zhanxue S (2011) FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim Acta A Mol Biomol Spectrosc 79(5):1013–1016. https://doi.org/10.1016/j.saa.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  39. Di Gianni A, Amerio E, Monticelli O, Bongiovanni R (2008) Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix. Appl Clay Sci 42(1–2):116–124. https://doi.org/10.1016/j.clay.2007.12.011

    Article  CAS  Google Scholar 

  40. Chonkaew W, Sombatsompop N, Brostow W (2013) High impact strength and low wear of epoxy modified by a combination of liquid carboxyl terminated poly(butadiene-co-acrylonitrile) rubber and organoclay. Eur Polym J 49(6):1461–1470. https://doi.org/10.1016/j.eurpolymj.2013.03.022

    Article  CAS  Google Scholar 

  41. Zhu J, Zhu L, Zhu R, Tian S, Li J (2009) Surface microtopography of surfactant modified montmorillonite. Appl Clay Sci 45(1–2):70–75. https://doi.org/10.1016/j.clay.2009.04.010

    Article  CAS  Google Scholar 

  42. Liu D, Yuan P, Liu H, Li T, Tan D, Yuan W, He H (2013) High-pressure adsorption of methane on montmorillonite, kaolinite and illite. Appl Clay Sci 85:25–30. https://doi.org/10.1016/j.clay.2013.09.009

    Article  CAS  Google Scholar 

  43. Sani HA, Ahmad MB, Hussein MZ, Ibrahim NA, Musa A, Saleh TA (2017) Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf Environ Prot 109:97–105. https://doi.org/10.1016/j.psep.2017.03.024

    Article  CAS  Google Scholar 

  44. Wang G, Hua Y, Su X, Komarneni S, Ma S, Wang Y (2016) Cr(VI) adsorption by montmorillonite nanocomposites. Appl Clay Sci 124–125:111–118. https://doi.org/10.1016/j.clay.2016.02.008

    Article  CAS  Google Scholar 

  45. Ryu J, Jang YJ, Choi S, Kang HJ, Park H, Lee JS, Park S (2016) All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater 8(3):e248. https://doi.org/10.1038/am.2016.35

    Article  CAS  Google Scholar 

  46. Hu Z, Zhang P, Xie R, Li M, Lu Z, Xu X, Song L, Zhou L, Wu Y, Chen M, Zhao X (2018) Controlled synthesis of train-structured montmorillonite/layered double hydroxide nanocomposites by regulating the hydrolysis of polylactic acid. J Mater Sci 53(23):15859–15870. https://doi.org/10.1007/s10853-018-2758-6

    Article  CAS  Google Scholar 

  47. El Bourakadi K, Merghoub N, Fardioui M, Mekhzoum MEM, Kadmiri IM, Essassi EM, Bouhfid R (2019) Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: mechanical, morphological and antimicrobial properties. Compos Part B: Eng 172:103–110. https://doi.org/10.1016/j.compositesb.2019.05.042

    Article  CAS  Google Scholar 

  48. Arranz-Andrés J, Pérez E, Cerrada ML (2012) Smectic polyester/layered silicate nanostructured hybrids: effect of modified nanoclay in the phase transitions. Polymer 53(2):386–394. https://doi.org/10.1016/j.polymer.2011.11.042

    Article  CAS  Google Scholar 

  49. Zhu TT, Zhou CH, Kabwe FB, Wu QQ, Li CS, Zhang JR (2019) Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl Clay Sci 169:48–66. https://doi.org/10.1016/j.clay.2018.12.006

    Article  CAS  Google Scholar 

  50. da Silva Ribeiro SP, dos Santos Cescon L, Ribeiro RQCR, Landesmann A, de Moura Estevão LR, Nascimento RSV (2018) Effect of clay minerals structure on the polymer flame retardancy intumescent process. Appl Clay Sci 161:301–309. https://doi.org/10.1016/j.clay.2018.04.037

    Article  CAS  Google Scholar 

  51. Zheng JP, Luan L, Wang HY, Xi LF, Yao KD (2007) Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36(4):297–301. https://doi.org/10.1016/j.clay.2007.01.012

    Article  CAS  Google Scholar 

  52. Reguieg F, Ricci L, Bouyacoub N, Belbachir M, Bertoldo M (2019) Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polym Bull 77(2):929–948. https://doi.org/10.1007/s00289-019-02782-3

    Article  CAS  Google Scholar 

  53. Shaw AV, Vaughan AS, Andritsch T (2019) The effect of organoclay loading and matrix morphology on charge transport and dielectric breakdown in an ethylene-based polymer blend. J Mater Sci 54(19):13017–13028. https://doi.org/10.1007/s10853-019-03765-5

    Article  CAS  Google Scholar 

  54. Abbasian M, Seyyedi M, Jaymand M (2019) Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polym Bull 77(3):1107–1120. https://doi.org/10.1007/s00289-019-02773-4

    Article  CAS  Google Scholar 

  55. Das K, Ray D, Banerjee C, Bandyopadhyay NR, Mohanty AK, Misra M (2011) Novel materials from unsaturated polyester resin/styrene/tung oil blends with high impact strengths and enhanced mechanical properties. J Appl Polym Sci 119(4):2174–2182. https://doi.org/10.1002/app.32957

    Article  CAS  Google Scholar 

  56. Tiwari A (2012) Nanomechanical analysis of hybrid silicones and hybrid epoxy coatings—a brief review. Adv Chem Eng Sci 02(01):34–44. https://doi.org/10.4236/aces.2012.21005

    Article  CAS  Google Scholar 

  57. Libanori R, Erb RM, Reiser A, Le Ferrand H, Suess MJ, Spolenak R, Studart AR (2012) Stretchable heterogeneous composites with extreme mechanical gradients. Nat commun 3:1265. https://doi.org/10.1038/ncomms2281

    Article  CAS  PubMed  Google Scholar 

  58. He S, He T, Wang J, Wu X, Xue Y, Zhang L, Lin J (2019) A novel method to prepare acrylonitrile-butadiene rubber/clay nanocomposites by compounding with clay gel. Compos B Eng 167:356–361. https://doi.org/10.1016/j.compositesb.2019.03.013

    Article  CAS  Google Scholar 

  59. Chen S, Xie J, Yang Z (2019) Effect of reactive montmorillonite with amino on the properties of polyimide/montmorillonite nanocomposite. Polym Bull 77(2):687–699. https://doi.org/10.1007/s00289-019-02767-2

    Article  CAS  Google Scholar 

  60. Guillonneau G, Kermouche G, Bec S, Loubet J-L (2012) Determination of mechanical properties by nanoindentation independently of indentation depth measurement. J Mater Res 27(19):2551–2560. https://doi.org/10.1557/jmr.2012.261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Egyptian Petroleum Research Institute for supporting us with suitable analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fekry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekry, M., Mazrouaa, A., Mohamed, M.G. et al. Properties of polyethylcyanoacrylate/modified Mt composites with highly exfoliated montmorillonite. Polym. Bull. 78, 5685–5711 (2021). https://doi.org/10.1007/s00289-020-03402-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03402-1

Keywords

Navigation