Skip to main content
Log in

Preparation of microencapsulated aluminum hypophosphite and its flame retardancy of the unsaturated polyester resin composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel microencapsulated flame retardant (CP@AHP), aluminum hypophosphite (AHP) as the core material and chlorinated paraffin (CP) as the shell material, was successfully prepared and applied in unsaturated polyester resin (UPR) to prepare the UPR composites in this paper. The aim of microencapsulation AHP was to enhance the fire safety of the UPR composites. The structure, morphology and thermal behavior of CP@AHP were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis (TG), respectively. The thermal and flame-retardant properties of the UPR composites were evaluated by TG and cone calorimetry test (CCT), respectively. At the same time, the tensile and flexural properties of UPR composites were tested. Compared with pure UPR, the residue at 800 °C of UPR/CP@AHP-1:2 (UPR/CP@AHP with the mass ratio of CP:AHP = 1:2) under nitrogen atmosphere is from 6.9 to 31.6. The CCT results showed that the peak heat release rate (pHRR) and total heat release of UPR/CP@AHP-1:2 decreased by 58.4 and 46.1%, respectively, in comparison with pure UPR. The results of TG and CCT indicated that CP@AHP could improve the thermal stability and flame retardancy of the UPR composites. Finally, based on the above results, the flame retardancy mechanism of CP@AHP was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu Y, Chen Z, Zhang Q et al (2019) Modified montmorillonite combined with intumescent flame retardants on the flame retardancy and thermal stability properties of unsaturated polyester resins. Polym Advan Technol 30:998–1009

    Article  CAS  Google Scholar 

  2. Chen Z, Yu Y, Zhang Q et al (2019) Preparation of phosphorylated chitosan-coated carbon microspheres as flame retardant and its application in unsaturated polyester resin. Polym Advan Technol 30:1933–1942

    Article  CAS  Google Scholar 

  3. Jiang M, Zhang Y et al (2019) Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. J Appl Polym Sci 136:47180

    Article  Google Scholar 

  4. Wang Y, Zhang L, Yang Y et al (2016) Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR[J]. J Therm Anal Calorim 125(2):839–848

    Article  CAS  Google Scholar 

  5. Baskaran R, Sarojadevi M, Vijayakumar CT (2011) Unsaturated polyester nanocomposites filled with nano alumina. J Mater Sci 46(2011):4864–4871

    Article  CAS  Google Scholar 

  6. Nazaré S, Kandola BK, Horrocks AR (2006) Flame-retardant unsaturated polyester resin incorporating nanoclays. Polym Adv Technol 17(2006):294–303

    Article  Google Scholar 

  7. Lin Y, Jiang S, Hu Y et al (2016) Hybrids of aluminum hypophosphite and ammonium polyphosphate: highly effective flame retardant system for unsaturated polyester resin. Polym Compos 39:1763–1770

    Article  Google Scholar 

  8. Wu N, Xiu Z, Du J (2017) Preparation of microencapsulated aluminum hypophosphite and flame retardancy and mechanical properties of flame-retardant ABS composites. J Appl Polym Sci 134(33):45008

    Article  Google Scholar 

  9. Xu MJ, Liu C, Ma K et al (2017) Effect of surface chemical modification for aluminum hypophosphite with hexa-(4-aldehyde-phenoxy)-cyclotriphosphazene on the fire retardancy, water resistance, and thermal properties for polyamide 6. Polym Adv Technol 28:1382–1395

    Article  CAS  Google Scholar 

  10. Wu N, Xiu Z (2015) Surface microencapsulation modification of aluminum hypophosphite and improved flame retardancy and mechanical properties of flame-retardant acrylonitrile–butadiene–styrene composites. RSC Adv 5:49143–49152

    Article  CAS  Google Scholar 

  11. Li Q, Li B, Zhang S et al (2012) Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6. J Appl Polym Sci 125(2012):1782–1789

    Article  CAS  Google Scholar 

  12. Yongqian S, Libi F, Xilei C et al (2017) Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials 7(9):259

    Article  Google Scholar 

  13. Zhu Y, Shi Y, Huang ZQ et al (2017) Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos Part A Appl Sci 99:149–156

    Article  CAS  Google Scholar 

  14. Ge H, Tang G, Hu WZ et al (2015) Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater 294:186–194

    Article  CAS  Google Scholar 

  15. Xiong X, Hu S et al (2016) Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite. J Therm Anal Calorim 125:175–185

    Article  Google Scholar 

  16. Zhou X, Li J, Wu Y (2015) Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polym Adv Technol 26(3):255–265

    Article  CAS  Google Scholar 

  17. Chen X, Ma C, Jiao C (2016) Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stabil 129:275–285

    Article  CAS  Google Scholar 

  18. Tang G, Wang X, Xing W et al (2012) Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res 51(37):12009–12016

    Article  CAS  Google Scholar 

  19. Wu N, Li X (2014) Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stabil 105:265–276

    Article  CAS  Google Scholar 

  20. Zhou K, Tang G, Jiang S et al (2016) Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. RSC Adv 6:37672–37680

    Article  CAS  Google Scholar 

  21. Ding Q, Ding N et al (2018) Chlorinated paraffins wrapping of carbon nanotubes: a theoretical investigation. Appl Surf Sci 436(2017):277–282

    Article  CAS  Google Scholar 

  22. Bayen S et al (2006) Chlorinated paraffins: a review of analysis and environmental occurrence. Environ Int 32:915–929

    Article  CAS  Google Scholar 

  23. Castells P, Santos FJ, Galceran MT (2003) Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples. J Chromatogr A 984(1):1–8

    Article  CAS  Google Scholar 

  24. Du J, Guan H, Song DM et al (2016) Influence of chlorinated paraffin/titanium additives on burning and radiance performances of magnesium/teflon/viton(MTV) foil-type composition. Infrared Phys Technol 80:21–26

    Article  Google Scholar 

  25. Liu G, Gao S (2018) Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid). J Appl Polym Sci 2018:46359

    Article  Google Scholar 

  26. Xu WZ, Liu L, Wang SQ et al (2015) Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam. J Appl Polym Sci 132(47)

  27. Wang DK, He H, Yu P (2016) Flame-retardant and thermal degradation mechanism of low-density polyethylene modified with aluminum hypophosphite and microencapsulated red phosphorus. J Appl Polym Sci 133(13)

  28. Xu MJ, Wang J, Ding YH et al (2015) Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system. Chinese J Polym Sci 33(2):318–328

    Article  CAS  Google Scholar 

  29. Zhao F, Guo ZL, Chen W et al (2016) Synergistic effects of pentaerythritol with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. Polym Compos 39:2299–2306

    Article  Google Scholar 

  30. Tang G, Zhang R, Wang X et al (2013) Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J Macromol Sci A 50(2):255–269

    Article  CAS  Google Scholar 

  31. Yan YW, Huang JQ, Guan YH et al (2014) Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polym Degrad Stabil 99:35–42

    Article  CAS  Google Scholar 

  32. Zhu HM, Jiang XG, Yan JH et al (2008) TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrol 82(1):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan [Grant No. 2016YFC0800100]; the State Key Program of National Natural Science of China [Grant No. 2143 6006]; and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant No. 18KJB620002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yu, Y., Zhang, Y. et al. Preparation of microencapsulated aluminum hypophosphite and its flame retardancy of the unsaturated polyester resin composites. Polym. Bull. 78, 5337–5354 (2021). https://doi.org/10.1007/s00289-020-03377-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03377-z

Keywords

Navigation