Skip to main content
Log in

Ferroelectric ceramic dispersion to enhance the β phase of polymer for improving dielectric and ferroelectric properties of the composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ferroelectric ceramic–polymer composites consisting of Poly Vinyledine Fluoride–Hexa Fluoro Propylene (PVDF-HFP) as polymer host and 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) ceramics as filler were prepared using solution casting technique. These composites are characterized for structural, microstructural, vibrational, optical, dielectric and ferroelectric properties at various experimental conditions. The electroactive β phase fraction (observed from XRD and FTIR analysis) increases as the filler concentration increases up to 20 wt% of BZT-BCT and above that its value decreases. FTIR results were analyzed to understand the mechanism of enhancement of β phase by the interaction between negatively surface charged ions of filler with the CH2 dipole of polymer matrix. UV–visible spectroscopy also employed to confirm polymer–ceramic filler interaction. Variation of the dielectric constant with different filler concentrations is explained using the percolation theory. Finally, the interplay between the functional properties and the β phase is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barick BK, Mishra KK, Arora AK, Choudhary RNP, Pradhan DK (2011) Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J Phys D Appl Phys 44:355402

    Article  CAS  Google Scholar 

  2. Mohanty HS, Dam T, Borkar H, Pradhan DK, Mishra KK, Kumar A, Sahoo B, Kulriya PK, Cazorla C, Scott JF, Pradhan DK (2019) Structural transformations and physical properties of (1 − x) Na0.5Bi0.5TiO3 − x BaTiO3 solid solutions near a morphotropic phase boundary. J Phys: Condens Matter 31:075401

    Google Scholar 

  3. Kao KC (2004) Dielectric phenomena in solids. Elsevier Academic Pres, California

    Google Scholar 

  4. Yu K, Wang H, Zhou Y, Bai Y, Niu Y (2013) Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys 113:034105

    Article  CAS  Google Scholar 

  5. Prateek TV, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  CAS  PubMed  Google Scholar 

  6. Pfeifer S, Bandaru PR (2014) A methodology for quantitatively characterizing the dispersion of nanostructures in polymers and composites. Mater Res Lett 2:166–175

    Article  CAS  Google Scholar 

  7. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354

    Article  CAS  Google Scholar 

  8. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040–18046

    Article  CAS  Google Scholar 

  9. Feng Y, Li WL, Hou YF, Yu Y, Cao WP, Zhang TD, Fei WD (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260

    Article  CAS  Google Scholar 

  10. Bharath RS, Chakraborthy T, Nhalil H, Masin B, Ashok K, Sreemoolanadhan H, Oommena C, Elizabeth S (2019) Synthesis and evaluation of PVDF–MgTiO3 polymer–ceramic composites for low-k dielectric applications. J Mater Chem C 7:4484–4496

    Article  CAS  Google Scholar 

  11. Sousa RE, Pereira JN, Ferreira JCC, Costa CM, Machado AV, Silva MM, Mendez SL (2014) Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym Test 40:245–255

    Article  CAS  Google Scholar 

  12. Wang C, Zhang J, Gong S, Ren K (2018) Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposite for ultra-high energy density capacitor applications. J Appl Phys 124:154103

    Article  CAS  Google Scholar 

  13. Adhikary P, Mandal D (2017) Enhanced electro-active phase in a luminescent P(VDF–HFP)/Zn2+ flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection. Phys Chem Chem Phys 19:17789–17798

    Article  CAS  PubMed  Google Scholar 

  14. Sultana A, Sadhukhan P, Alam MM, Das S, Middya TR, Mandal D (2018) Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector. Appl Mater Interfaces 10:4121–4130

    Article  CAS  Google Scholar 

  15. Zhang S, Tong W, Wang J, Wang W, Wang Z, Zhang Y (2019) Modified sepiolite/PVDF-HFP composite film with enhanced piezoelectric and dielectric properties. J Appl Polym Sci 136:48412

    Google Scholar 

  16. Nakamura K, Sawai D, Watanabe Y, Taguchi D, Takahashi Y, Furukawa T, Kanamoto T (2003) Effect of annealing on the structure and properties of poly(vinylidene fluoride) β-form films. J Polym Sci B 41:1701–1712

    Article  CAS  Google Scholar 

  17. Kumar RS, Sarathi T, Venkataraman KK, Bhattacharyya A (2019) Enhanced piezoelectric properties of polyvinylidene fluoride nanofibers using carbon nanofiber and electrical poling. Mater Lett 255:126515

    Article  CAS  Google Scholar 

  18. Parangusan H, Ponnamma D, AlMaadeedb MAA (2018) Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe–ZnO nanocomposites for self-powering devices. Soft Matter 14:8803–8813

    Article  CAS  PubMed  Google Scholar 

  19. Shepelin NA, Glushenkov AM, Lussini VC, Fox PJ, Dicinoski GW, Shapter JG, Ellis AV (2019) New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci 12:1143–1176

    Article  CAS  Google Scholar 

  20. Kar E, Bose N, Das S, Mukherjee N, Mukherjee S (2015) Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys Chem Chem Phys 17:22784–22798

    Article  CAS  PubMed  Google Scholar 

  21. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  22. Liu YL, Li Y, Xu JT, Fan ZQ (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). Appl Mater Interfaces 2:1759–1768

    Article  CAS  Google Scholar 

  23. Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J (2011) High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid Appl. Phys Lett 98:032901

    Google Scholar 

  24. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723

    Article  CAS  Google Scholar 

  25. Luo B, Wang X, Wang Y, Li L (2014) Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J Mater Chem A 2:510–519

    Article  CAS  Google Scholar 

  26. Harstad S, Dsouza N, Soin N, Gendy AAE, Gupta S, Pecharsky VK, Shah T, Siores E, Hadimani RL (2017) Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting. AIP Adv A 7:056411

    Article  CAS  Google Scholar 

  27. Jain A, Prashanth KJ, Sharma AK, Jain A, Rashmi PN (2015) Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym Eng Sci 55:1589–1616

    Article  CAS  Google Scholar 

  28. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:1257602

    Google Scholar 

  29. Kumar P, Mishra P, Sonia S (2013) Synthesis and characterization of lead-free ferroelectric 0.5[Ba(Zr0.2Ti0.8)O3]–0.5[(Ba0.7Ca0.3)TiO3]—polyvinylidene difluoride 0–3 composites. J Inorg Organomet Polym 23:539–545

    Article  CAS  Google Scholar 

  30. Sadhu SPP, Siddabattuni S, Muthukumar VS, Varma KBR (2018) Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. J Mater Sci: Mater Electron 29:6174–6182

    CAS  Google Scholar 

  31. Dash S, Mohanty HS, Bhoi K, Kant R, Kumar A, Thomas R, Pradhan DK (2018) Sintering dependent Ca2+ solubility in barium titanate synthesized by sol–gel auto combustion method. J Mater Sci: Mater Electron 29:20820–20831

    CAS  Google Scholar 

  32. Coondoo I, Panwar N, Amorın H, Alguero M, Kholkin AL (2013) Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic. J Appl Phys 113:214107

    Article  CAS  Google Scholar 

  33. Tian Y, Wei L, Chao X, Liu Z, Yang Z (2013) Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J Am Ceram Soc 96:496–502

    Article  CAS  Google Scholar 

  34. Ma W, Zhang J, Chen S, Wang X (2008) β-Phase of poly(vinylidene fluoride) formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend from solutions. Appl Surf Sci 254:5635–5642

    Article  CAS  Google Scholar 

  35. Wright DGM, Dunk R (1988) The effect of crystallinity on the properties of injection moulded polypropylene and polyacetal. Polymer 29:793–796

    Article  CAS  Google Scholar 

  36. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics and applications 28, Hudgin DE. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  37. Bryant WMD, Pierce RHH, Lindegren CR, Roberts R (1955) Nucleation and growth of crystallites in high polymers. Formation of spherulites. J Polym Sci 16:131–142

    Article  CAS  Google Scholar 

  38. Pethrick RA (2007) Polymer structure characterization: from nano to macro organization. RSC Publishing, New York

    Google Scholar 

  39. Palza H, Vera J, Wilhelm M, Zapata P (2011) Spherulite growth rate in polypropylene/silica nanoparticle composites: effect of particle morphology and compatibilizer. Macromol Mater Eng 296:744–751

    Article  CAS  Google Scholar 

  40. Dutta B, Kar E, Bose N, Mukherjee S (2015) Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv 5:105422–105434

    Article  CAS  Google Scholar 

  41. Mishra P, Kumar P (2015) Structural, dielectric and optical properties of [(BZT–BCT)-(epoxy-CCTO)] composites. Ceram Int 41:2727–2734

    Article  CAS  Google Scholar 

  42. Mehto VR, Rathore D, Pandey RK (2014) Optical and structural properties of electrodeposited polyaniline/Q-CdS composites. Polym Comput 35:1864–1874

    Article  CAS  Google Scholar 

  43. Wood DL, Tauc J (1972) Weak absorption tails in amorphous semiconductors. Phys Rev B 5:3144–3151

    Article  Google Scholar 

  44. Rani J, Yadav KL, Prakash S (2014) Structural, dielectric and optical properties of sol–gel synthesized 0.55Ba(Zr0.2Ti0.8)O3–0.45(Ba0.7Ca0.3)TiO3 ceramic. Appl Phys A 117:1131–1137

    Article  CAS  Google Scholar 

  45. Aziz SB, Abdullah OG, Rasheed MA (2017) A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J Appl Polym Sci 134:44847

    Google Scholar 

  46. Cavalcante LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E (2008) Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces. Chem Eng J 143:299–307

    Article  CAS  Google Scholar 

  47. Araujo MM, Silva LKR, Sczancoski JC, Orlandi MO, Longo E, Santos AGD, Sa JLS, Santos RS, Luz GE, Cavalcante LS (2016) Anatase TiO2 nanocrystal anchored at inside of SBA-15 mesopores and their optical behavior. Appl Surf Sci 389:1137–1147

    Article  CAS  Google Scholar 

  48. Yu L, Cebe P (2009) Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50:2133–2141

    Article  CAS  Google Scholar 

  49. Shanthi PM, Hanumantha PJ, Albuquerque T, Gattu B, Kumta PN (2018) Novel composite polymer electrolytes of PVdF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium-sulfur batteries. Appl Energy Mater 1:483–494

    Article  CAS  Google Scholar 

  50. Frank SC (1968) Waves: Berkeley physics course, vol 3. McGraw-Hill book company, New York

    Google Scholar 

  51. Patra A, Pal A, Sen S (2018) Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram Int 44:11196–11203

    Article  CAS  Google Scholar 

  52. Dan Yu, Nuo-xin X, Liang H, Zhang Q-l, Yang H (2015) Nanocomposites with BaTiO3–SrTiO3 hybrid fillers exhibiting enhanced dielectric behaviours and energy-storage densities. J Mater Chem C 3:4016–4022

    Article  CAS  Google Scholar 

  53. He F, Lau S, Chan HL (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710–715

    Article  CAS  Google Scholar 

  54. Chen Q, Du P, Jin L, Weng W, Han G (2007) Percolative conductor/polymer composite films with significant dielectric properties. Appl Phys Lett 91:022912

    Article  CAS  Google Scholar 

  55. Dahiya HS, Kishore N, Mehra RM (2007) Effect of percolation on electrical and dielectric properties of acrylonitrile butadiene styrene/graphite composite. J Appl Polym Sci 106:2101–2110

    Article  CAS  Google Scholar 

  56. Jia Q, Huang X, Wang G, Diao J, Jiang P (2016) MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J Phys Chem C 120:10206–10214

    Article  CAS  Google Scholar 

  57. Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11:4653–4682

    Article  CAS  PubMed  Google Scholar 

  58. Hu T, Juuti J, Jantunen H, Vilkman T (2007) Dielectric properties of BST/polymer composite. J Eur Ceram Soc 27:3997–4001

    Article  CAS  Google Scholar 

  59. Mohanty HS, Ravikant KA, Kurliya PK, Thomas R, Pradhan DK (2019) Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly(vinylidene fluoride) with enhanced β-phase formation. Mater Chem Phys 230:221–230

    Article  CAS  Google Scholar 

  60. Mohanty HS, Sharma SK, Ravikant KP, Kumar A, Thomas R, Pradhan DK (2019) Enhanced functional properties of soft polymer-ceramic composites by swift heavy ion irradiation. Phys Chem Chem Phys 21:24629–24642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Smaranika Dash acknowledges Ministry of Human Resource Development, India for the research fellowship. One of our Co- author, H.S.M. acknowledges Council of Scientific and Industrial Research (CSIR), India for the SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dillip K. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Mohanty, H.S., Ravikant et al. Ferroelectric ceramic dispersion to enhance the β phase of polymer for improving dielectric and ferroelectric properties of the composites. Polym. Bull. 78, 5317–5336 (2021). https://doi.org/10.1007/s00289-020-03372-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03372-4

Keywords

Navigation