Skip to main content
Log in

Enhancing efficacy and safety of azelaic acid via encapsulation in cyclodextrin nanosponges: development, characterization and evaluation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Azelaic acid (AA), a promising agent for acne and hyperpigmentation disorders, is associated with side effects viz. rashes, skin irritation, dryness, burning and stinging. Its poor solubility also pose challenge in the development of suitable formulation. Therefore, this research was aimed to design cyclodextrin nanosponges (CDNS) of AA to address above-mentioned challenges. Herein, the fabrication of CDNS by melt method was demonstrated employing β-cyclodextrin (β-CD) as polymer and diphenyl carbonate (DPC) as a cross-linker. AA was loaded in CDNS via lyophilization and appropriately characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray powder diffraction and nuclear magnetic resonance. For morphological evaluation, field emission scanning electron and transmission electron microscopy were also performed. The particle size of AANS was in nanorange, with acceptable zeta potential, low polydispersity index and delayed release. The safety of the nanoformulation was assessed using Human Epidermal Keratinocyte cell lines. Further, molecular docking studies for AA was carried out. In vitro antibacterial, antioxidant and antityrosinase assay were also conducted for prepared nanoformulation. The results of all the studies performed revealed that encapsulation of AA in nanosponges led to improvement in efficacy of drug in terms of solubility, release and safety, with adequate antimicrobial, antioxidant and antityrosinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jones G (2010) Beauty imagined: a history of the global beauty industry. Oxford University Press, Oxford

    Google Scholar 

  2. Seo YK, Kim SJ, Boo YC et al (2011) Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin Exp Dermatol Clin Dermatol 36:260–266

    Article  CAS  Google Scholar 

  3. Singh BK, Park SH, Lee H-B et al (2016) Kojic acid peptide: a new compound with anti-tyrosinase potential. Ann Dermatol 28:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boo YC (2019) p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants 8:275

    Article  CAS  PubMed Central  Google Scholar 

  5. Ghanbarzadeh S, Hariri R, Kouhsoltani M et al (2015) Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B Biointerfaces 136:1004–1010

    Article  CAS  PubMed  Google Scholar 

  6. Rendon MI (2004) Utilizing combination therapy to optimize melasma outcomes. J Drugs Dermatol JDD 3:S27–34

    PubMed  Google Scholar 

  7. Jow T, Hantash BM (2014) Hydroquinone-induced depigmentation: case report and review of the literature. Dermatitis 25:e1–e5

    Article  PubMed  Google Scholar 

  8. Lima LL, Lima RM, da Silva AF et al (2013) Azastilbene analogs as tyrosinase inhibitors: new molecules with depigmenting potential. Sci World J. https://doi.org/10.1155/2013/274643

    Article  Google Scholar 

  9. Cabanes J, Chazarra S, Garcia-Carmona F (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol 46:982–985

    Article  CAS  PubMed  Google Scholar 

  10. Maeda K, Fukuda M (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769

    CAS  PubMed  Google Scholar 

  11. Hu Z-M, Zhou Q, Lei T-C et al (2009) Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: biosafety as skin whitening agents. J Dermatol Sci 55:179–184

    Article  CAS  PubMed  Google Scholar 

  12. Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzym Inhib Med Chem 32:403–425

    Article  CAS  Google Scholar 

  13. Desmedt B, Courselle P, De Beer JO et al (2016) Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J Eur Acad Dermatol Venereol 30:943–950

    Article  CAS  PubMed  Google Scholar 

  14. Stinco G, Bragadin G, Trotter D et al (2007) Relationship between sebostatic activity, tolerability and efficacy of three topical drugs to treat mild to moderate acne. J Eur Acad Dermatol Venereol JEADV 21:320–325. https://doi.org/10.1111/j.1468-3083.2006.01914.x

    Article  CAS  PubMed  Google Scholar 

  15. Reis C, Gomes A, Rijo P et al (2013) Evaluation of a new topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can 19:1–10. https://doi.org/10.1017/S1431927613000536

    Article  CAS  Google Scholar 

  16. Liu C-H, Huang H-Y (2012) Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis. Chem Pharm Bull (Tokyo) 60:1118–1124. https://doi.org/10.1248/cpb.c12-00220

    Article  CAS  Google Scholar 

  17. Nguyen QH, Bui TP (1995) Azelaic acid: pharmacokinetic and pharmacodynamic properties and its therapeutic role in hyperpigmentary disorders and acne. Int J Dermatol 34:75–84

    Article  CAS  PubMed  Google Scholar 

  18. Halder RM, Richards GM (2004) Topical agents used in the management of hyperpigmentation. Skin Ther Lett 9:1–3

    CAS  Google Scholar 

  19. Kumar A, Rao R, Yadav P (2019) Azelaic acid: a promising agent for dermatological applications. Curr Drug Ther. https://doi.org/10.2174/1574885514666190904160228

    Article  Google Scholar 

  20. Oge LK, Muncie HL, Phillips-Savoy AR (2015) Rosacea: diagnosis and treatment. Am Fam Physician 92:187–196

    PubMed  Google Scholar 

  21. Grimes PE (2009) Management of hyperpigmentation in darker racial ethnic groups. Semin Cutan Med Surg 28(2):77–85

    Article  CAS  PubMed  Google Scholar 

  22. Töpert M, Rach P, Siegmund F (1989) Pharmacology and toxicology of azelaic acid. Acta Derm Venereol Suppl (Stockh) 143:14–19

    Google Scholar 

  23. Müller RH, MaÈder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  PubMed  Google Scholar 

  24. Kumar S, Rao R (2019) Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J Incl Phenom Macrocycl Chem 94:1–20

    Article  CAS  Google Scholar 

  25. Hollman PH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Trotta F, Rao R (2018) Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics 10:169

    Article  CAS  PubMed Central  Google Scholar 

  27. Pushpalatha R, Selvamuthukumar S, Kilimozhi D (2018) Cross-linked, cyclodextrin-based nanosponges for curcumin delivery—physicochemical characterization, drug release, stability and cytotoxicity. J Drug Deliv Sci Technol 45:45–53. https://doi.org/10.1016/j.jddst.2018.03.004

    Article  CAS  Google Scholar 

  28. Garrido B, González S, Hermosilla J et al (2019) Carbonate-β-cyclodextrin-based nanosponge as a nanoencapsulation system for piperine: physicochemical characterization. J Soil Sci Plant Nutr 19:620–630. https://doi.org/10.1007/s42729-019-00062-7

    Article  CAS  Google Scholar 

  29. Anandam S, Selvamuthukumar S (2014) Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J Mater Sci 49:8140–8153

    Article  CAS  Google Scholar 

  30. Ramírez-Ambrosi M, Caldera F, Trotta F et al (2014) Encapsulation of apple polyphenols in β-CD nanosponges. J Incl Phenom Macrocycl Chem 80:85–92. https://doi.org/10.1007/s10847-014-0393-7

    Article  CAS  Google Scholar 

  31. Swaminathan S, Vavia PR, Trotta F et al (2013) Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem 76:201–211

    Article  CAS  Google Scholar 

  32. Rao M, Bajaj A, Khole I et al (2013) In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 77:135–145. https://doi.org/10.1007/s10847-012-0224-7

    Article  CAS  Google Scholar 

  33. Hua S (2014) Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomed 9:735

    Article  Google Scholar 

  34. ElMeshad AN, Mortazavi SM, Mozafari MR (2014) Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J Liposome Res 24:1–9

    Article  CAS  PubMed  Google Scholar 

  35. Patel N, Padia N, Vadgama N et al (2016) Formulation and evaluation of microsponge gel for topical delivery of fluconazole for fungal therapy. J Pharm Investig 46:221–238

    Article  CAS  Google Scholar 

  36. Rajeshwari HR, Dhamecha D, Jagwani S et al (2017) Formulation of thermoreversible gel of cranberry juice concentrate: evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. Mater Sci Eng C 75:1506–1514

    Article  CAS  Google Scholar 

  37. Kumar PM, Ghosh A (2017) Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 96:243–254

    Article  CAS  PubMed  Google Scholar 

  38. RCSB PDB - Search Results. https://www.rcsb.org/pdb/results/results.do?tabtoshow=Current&qrid=31D5FFB5. Accessed 25 Feb 2020

  39. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  40. Dhakar NK, Caldera F, Bessone F et al (2019) Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr Polym 224:115168

    Article  CAS  PubMed  Google Scholar 

  41. Ansari KA, Vavia PR, Trotta F, Cavalli R (2011) Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12:279. https://doi.org/10.1208/s12249-011-9584-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zainuddin R, Zaheer Z, Sangshetti JN, Momin M (2017) Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm 43:2076–2084

    Article  CAS  PubMed  Google Scholar 

  43. Padamwar MN, Pokharkar VB (2006) Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm 320:37–44

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh P-W, Al-Suwayeh SA, Fang C-L et al (2012) The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin. Eur J Pharm Biopharm 81:369–378. https://doi.org/10.1016/j.ejpb.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  45. Organic Spectroscopy International. https://orgspectroscopyint.blogspot.com/. Accessed 19 Feb 2020

  46. Olteanu AA, Aramă C-C, Radu C et al (2014) Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide). J Incl Phenom Macrocycl Chem 80:17–24

    Article  CAS  Google Scholar 

  47. Boukamp P, Petrussevska RT, Breitkreutz D et al (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  48. Schürer N, Köhne A, Schliep V et al (1993) Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytes. Exp Dermatol 2:179–185

    Article  PubMed  Google Scholar 

  49. Charnock C, Brudeli B, Klaveness J (2004) Evaluation of the antibacterial efficacy of diesters of azelaic acid. Eur J Pharm Sci 21:589–596

    Article  CAS  PubMed  Google Scholar 

  50. Leeming JP, Holland KT, Bojar RA (1986) The in vitro antimicrobial effect of azelaic acid. Br J Dermatol 115:551–556

    Article  CAS  PubMed  Google Scholar 

  51. Holland KT, Bojar RA (1993) Antimicrobial effects of azelaic acid. J Dermatol Treat 4:S8–S11

    Article  Google Scholar 

  52. Al-Marabeh S, Khalil E, Khanfar M et al (2017) A prodrug approach to enhance azelaic acid percutaneous availability. Pharm Dev Technol 22:578–586. https://doi.org/10.1080/10837450.2016.1200614

    Article  CAS  PubMed  Google Scholar 

  53. Lowe NJ, Rizk D, Grimes P et al (1998) Azelaic acid 20% cream in the treatment of facial hyperpigmentation in darker-skinned patients. Clin Ther 20:945–959

    Article  CAS  PubMed  Google Scholar 

  54. Sahoo NG, Kakran M, Shaal LA et al (2011) Preparation and characterization of quercetin nanocrystals. J Pharm Sci 100:2379–2390

    Article  CAS  PubMed  Google Scholar 

  55. Sapino S, Carlotti ME, Cavalli R et al (2013) Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J Incl Phenom Macrocycl Chem 75:69–76

    Article  CAS  Google Scholar 

  56. Chawla S, DeLong MA, Visscher MO et al (2008) Mechanism of tyrosinase inhibition by deoxyarbutin and its second-generation derivatives. Br J Dermatol 159:1267–1274

    Article  CAS  PubMed  Google Scholar 

  57. Sharma VK, Choi J, Sharma N et al (2004) In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 18:841–844

    CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Dr. APJ Abdul Kalam central instrument laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar for providing necessary facilities for present investigation. Jay Chem Marketing, Mumbai is also acknowledged for providing a gift sample of β-cyclodextrin. The authors also wish to thank Dr. Ajmer Singh, Department of pharmaceutical sciences, Chitkara university, Rajpura (India) for molecular docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Rao.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rao, R. Enhancing efficacy and safety of azelaic acid via encapsulation in cyclodextrin nanosponges: development, characterization and evaluation. Polym. Bull. 78, 5275–5302 (2021). https://doi.org/10.1007/s00289-020-03366-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03366-2

Keywords

Navigation