Preparation and application of epoxidized natural rubber from Artocarpus heterophyllus gum

Abstract

Epoxidized jackfruit gum (EJG) was prepared and characterized. An attempt to prepare a solid polymer electrolyte from EJG was made. The characterizations of epoxidized jackfruit gum were carried out through FT-IR spectroscopy, NMR spectroscopy, gel permeation chromatography, nitrogen content determination, water uptake determination and ion exchange capacity. The ion conductivity, differential scanning calorimetry, and SEM images of the blends of EJG and LiClO4 were characterized. The results indicated the epoxy group content of the sample achieved 95 mol% after 3 h of the epoxidation. During the epoxidation, the nitrogen content reduced, whereas the phospholipid content of the samples did not change. The molecular weight of samples reduced during the epoxidation. The ion conductivity of EJG/LiClO4/epoxidized natural rubber was improved, i.e. in order of 10−4 S/cm which was attributed to the presence of epoxy group in EJG. The liquid crystal may form in EJG/LiClO4 blends. These phenomena may suggest the strong interaction between epoxy group in EJG and LiClO4.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Reddy KR, Sin BC, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    CAS  Article  Google Scholar 

  2. 2.

    Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818

    CAS  Article  Google Scholar 

  3. 3.

    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    CAS  Article  Google Scholar 

  4. 4.

    Kawahara S, Inomata Y, Tanaka Y, Ohya N (1997) Solution-grown crystal of cis-l,4-polyisoprene. Polymer 38:4113–4116

    CAS  Article  Google Scholar 

  5. 5.

    Kawazura T, Kawahara S, Isono Y (2005) Effect of fatty acids on the strain-induced crystallization of natural rubber detected by tear energy measurements. J Appl Polym Sci 98:613–619

    CAS  Article  Google Scholar 

  6. 6.

    Klinklai W, Kawahara S, Mizumo T, Yoshizawa M, Sakdapipanich JT, Isono Y, Ohno H (2003) Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. Eur Polym J 39:1707–1712

    CAS  Article  Google Scholar 

  7. 7.

    Phinyocheep P, Duangthong S (2000) Ultraviolet-curable liquid natural rubber. J Appl Polym Sci 78:1478–1485

    CAS  Article  Google Scholar 

  8. 8.

    Nghia PT, Siripitakchai N, Klinklai W, Saito T, Yamamoto Y, Kawahara S (2008) Compatibility of liquid deproteinized natural rubber having epoxy group (LEDPNR)/poly (L-Lactide) blend. J Appl Polym Sci 108:393–399

    CAS  Article  Google Scholar 

  9. 9.

    Idris R, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. J Power Sources 94:206–211

    CAS  Article  Google Scholar 

  10. 10.

    Glasse MD, Idris R, Latham RJ, Linford RG, Schlindwein WS (2002) Polymer electrolytes based on modified natural rubber. Solid State Ionics 147:289–294

    CAS  Article  Google Scholar 

  11. 11.

    Ibrahim S, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers 6:2928–2941. https://doi.org/10.3390/polym6122928

    CAS  Article  Google Scholar 

  12. 12.

    Aina Shafinaz MBK, Baharulrazi N, Che Man SH (2019) Preparation of reinforced hydroxyl terminated liquid epoxidized natural rubber nanocomposite by grafting of graphene oxide. Mater Today: Proc 17:761–767

    CAS  Google Scholar 

  13. 13.

    Bhadra S, Mohan N, Parikh G, Nair S (2019) Possibility of artocarpus heterophyllus latex as an alternative source for natural rubber. Polym Test 79:106066. https://doi.org/10.1016/j.polymertesting.2019.106066

    CAS  Article  Google Scholar 

  14. 14.

    Mekkriengkrai D, Ute K, Swiezewska E, Chojnacki T, Tanaka Y, Sakdapipanich JT (2004) Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Biomacromol 5:2013–2019

    CAS  Article  Google Scholar 

  15. 15.

    Tan SK, Ahmad S, Chia CH, Mamun A, Heim HP (2013) A comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. Am J Mater Sci 3:55–61. https://doi.org/10.5923/j.materials.20130303.02

    Article  Google Scholar 

  16. 16.

    Ha NT, Quan NH, Ha CH, Linh NPD, Nghia PT (2018) Characterization of epoxidized natural rubber for coating application. Vietnam J Sci Technol 56:169–176. https://doi.org/10.15625/2525-2518/56/3B/12740

    Article  Google Scholar 

  17. 17.

    Ha NT, Shiobara K, Yamamoto Y, Nghia PT, Fukuhara L, Kawahara S (2015) Preparation and characterization of hydrogenated natural rubber with hydroxyl groups. Polym Adv Tech 26:1504–1511. https://doi.org/10.1002/pat.3571

    CAS  Article  Google Scholar 

  18. 18.

    Abdel-Hakim A, Mourad RM (2019) Mechanical, water uptake properties, and biodegradability of polystyrene-coated sisal fiber-reinforced high-density polyethylene. Polym Compos 41:1435–1446. https://doi.org/10.1002/pc.25467

    CAS  Article  Google Scholar 

  19. 19.

    Tanaka Y, Kawahara S, Eng AH, Shiba K, Ohya N (1995) Initiation of biosynthesis in cis-polyisoprenes. Phytochemistry 39:779–784

    CAS  Article  Google Scholar 

  20. 20.

    Tangpakdee J, Tanaka Y (1998) Long-chain polyprenols and rubber in young leaves of Hevea Brasiliensis. Phytochemistry 48:447–450

    CAS  Article  Google Scholar 

  21. 21.

    Gelling IR (1991) Epoxidised natural rubber. J Nat Rubb Res 6:184–205

    CAS  Google Scholar 

  22. 22.

    Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Bamba T, Fukusaki E, Kobayashi A, Tanaka Y (2005) Structural characterization of a-terminal group of natural rubber. 1. decomposition of branch-points by lipase and phosphatase treatments. Biomacromol 6:1851–1857

    CAS  Article  Google Scholar 

  23. 23.

    Sakdapipanich JT (2007) Structural Characterization of Natural Rubber Based on Recent Evidence from Selective Enzymatic Treatments. J Biosci Bioeng 103:287–292. https://doi.org/10.1263/jbb.103.287

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Saito T, Klinklai W, Kawahara S (2007) Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polymer 48:750–757

    CAS  Article  Google Scholar 

  25. 25.

    Bovey FA, Winslow FH (1979) Macromolecules: an introduction to polymer science. Academic press Inc, New York

    Google Scholar 

  26. 26.

    Bhowmik PK, Chang A, Kim J, Dizon EJ, Principe RCG, Han H (2019) Thermotropic Liquid-crystalline properties of viologens containing 4-n-alkylbenzenesulfonates. Crystals 9(2):77

    Article  Google Scholar 

  27. 27.

    Skotnicki M, Aguilar JA, Pyda M, Hodgkinson P (2015) Bisoprolol and bisoprolol-valsartan compatibility studied by differential scanning calorimetry, nuclear magnetic resonance and X-ray powder diffractometry. Pharm Res 32:414–429. https://doi.org/10.1007/s11095-014-1471-7

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

The research is funded by Hanoi University of Science and Technology (HUST) under project number T2018-PC-229.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thu Ha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, N.T., Anh, T.N., Thuy, T.T. et al. Preparation and application of epoxidized natural rubber from Artocarpus heterophyllus gum. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03361-7

Download citation

Keywords

  • Jackfruit gum
  • Epoxidation
  • Structural characterization
  • Polymer solid electrolyte