Skip to main content
Log in

Chemically copolymerized poly(2-chloroaniline-co-2-ethylaniline)-composite-Zn as an anodic material in Li-ion batteries

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(2-chloroaniline-co-2-ethylaniline)-composite-Zn was synthesized by in situ chemical oxidative method using ammonium per sulphate as oxidant, HCl as dopant and linear alkyl benzene sulphonic acid (LABSA) as surfactant. The resulting copolymer composite was characterized by FTIR, and UV–Visible spectroscopic methods. The thermal stability was established using thermogravimetric analysis. The conduction mechanism was examined in terms of the dielectric constant and the electrical conductivity of 1.46 × 10–7 Scm−1 measured showed semiconducting nature. The oxidation/reduction potentials and electrochemical reaction of Li/copolymer cells were tested by cyclic voltammetric technique. Poly(2-chloroaniline-co-2-ethylaniline)-composite-Zn has been tested as anode in Li-ion batteries. The discharge and charge capacity of ~ 47 and ~ 14mAh/g at 1 to 5 cycles show good reversibility. This is a feasible value for using it as the positive electrode material in lithium ion secondary batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, Mac Diarmid AG, Chiang CK, Heeger AJ (1997) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Chem Commun 16:578–580

    Google Scholar 

  2. Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers, vol 2, 2nd edn. Marcel Dekker, New York, p 1097

    Google Scholar 

  3. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach, vol 3. Kluwer Academic, Boston, p 760

    Book  Google Scholar 

  4. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Article  CAS  Google Scholar 

  5. Hall N (2003) Rhodium catalysed dehydrogenative borylation of vinylarenes and 1,1-disubstituted alkenes without sacrificial hydrogenation—a route to 1,1-disubstituted vinylboronates. Chem Commun 1:614–615

    Google Scholar 

  6. Sailor MJ, Curtis CL (1994) Conductiong polymer connections for molecular devices. Adv Mater 6:688–692

    Article  CAS  Google Scholar 

  7. Zhang J, Manias E, Wilkie CA (2008) Polymerically modified layered silicates: an effective route to nanocomposites. J Nanosci Nanotechnol 8:1597–1615

    Article  CAS  PubMed  Google Scholar 

  8. Shimano JY, MacDiarmid AG (2001) Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synth Met 123:251–262

    Article  CAS  Google Scholar 

  9. Michira I, Akinyeye R, Somerset V, Klink MJ, Sekota M, Al-Ahmed A, Baker PGL, Iwuoha EI (2007) Synthesis, characterisation of novel polyaniline nanomaterials and application in amperometric biosensors. Macromol Symp 255:57–69

    Article  CAS  Google Scholar 

  10. Wu CS, Huang YJ, Hsieh TH et al (2008) Studies on the conducting nanocomposite prepared by in situ polymerization of aniline monomers in a neat (aqueous) synthetic mica clay. J Polym Sci Part A 46:1800–1809

    Article  CAS  Google Scholar 

  11. Lei X, Su Z (2007) Conducting polyaniline‐coated nano silica by in situ chemical oxidative grafting polymerization. Polym Adv Technol 18:472–476

    Article  CAS  Google Scholar 

  12. Yang S, Ruckentein E (1993) Processable conductive composites of polyaniline/poly (alkyl methacrylate) prepared via an emulsion method. Synth Met 59:1–12

    Article  CAS  Google Scholar 

  13. Ruckenstein E, Yang S (1993) An emulsion pathway to electrically conductive polyaniline-polystyrene composites. Synth Met 53:283–292

    Article  CAS  Google Scholar 

  14. Ruckenstein E, Sun Y (1995) Polyaniline-containing electrical conductive composite prepared by two inverted emulsion pathway. Synth Met 74:107–113 [US Patent 5,508,348]

    Article  CAS  Google Scholar 

  15. Ghosh P, Chakrabarti A, Siddhanta SK (1999) Studies on stable aqueous polyaniline prepared with the use of polyacrylamide as the water soluble support polymer. Eur Polym J 35:803–813

    Article  CAS  Google Scholar 

  16. Park JK (2012) Principles and applications of lithium secondary batteries. Wiley, Hoboken

    Book  Google Scholar 

  17. Vincent CA (2000) Lithium batteries: a 50-year perspective, 1959–2009. Solid State Ion 134:159–167

    Article  CAS  Google Scholar 

  18. Guan H, Fan L-Z, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

  19. Takamura T, Sumiya K, Suzuki J, Yamada C, Sekine K (1999) Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J Power Sources 368:81–82

    Google Scholar 

  20. Wallace GG, Innis PC, Kane-Maguire LAP (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Los Angles, vol 4, pp 113–130

  21. Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 82:2385–2400

    Article  CAS  Google Scholar 

  22. Wang Q, Dong X, Pang Z, Yuanzhi Du, Xia X et al (2014) Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J Nanomed Res 12(12):17046–17057

    Google Scholar 

  23. Nigrey PJ, Maclnnes D Jr, Nairns DP, Macdiarmid AJ (1981) Lightweight rechargeable storage batteries using polyacetylene,(CH) x as the cathode‐active material. J Electrochem Soc 128(8):1651

    Article  CAS  Google Scholar 

  24. Panero S, Prosperi P, Bonino F, Scrosati B, Corradini A, Mastragostino M (1987) Characteristics of electrochemically synthesized polymer electrodes in lithium cells—III. Polypyrrole. Electrochim Acta 32(7):1007

    Article  CAS  Google Scholar 

  25. Hu YS, Demir-Cakan R, Titirici MM, Muller JO, Schlogl R, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium‐Ion batteries. Angew Chem Int Ed 47(9):1645–1649

    Article  CAS  Google Scholar 

  26. Liu J, Lin YH, Liang L, Voigt JA, Huber DL, Tian ZR, Coker E, Mckenzie B, Mcdermott MJ (2003) Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures. Chem Eur J 9:605–611

    Google Scholar 

  27. Husang JX, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  Google Scholar 

  28. Wan MX (2004) Journal of nanoscience and nanotechnology. In: Nalwa HS (ed) 2: 153–169. American Scientific Publishers, Los Angeles

  29. Qiu HJ, Wan MX, Mathews B, Dai LM (2001) Conducting polyaniline nanotubes by template-free polymerization. Macromolecules 34:675–681

    Article  CAS  Google Scholar 

  30. Husang JX, Kaner RB (2006) The intrinsic nanofibrillar morphology of polyaniline. Chem Commun 4:491–496

    Google Scholar 

  31. Wessling B (1997) Organic metals. Synth Met 85(1–3):1313–1318

    Article  CAS  Google Scholar 

  32. Kim HM, Lee CY, Joo JJ (2000) AC dielectric relaxation of lightly hydrochloric-acid (HCl)-doped polyanilines. Korean Phys Soc 36:371

    CAS  Google Scholar 

  33. Malathi J et al (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  34. Suthanthiraraj SA, Vadivel MK (2012) Electrical and structural properties of poly (ethylene oxide)/silver triflate polymer electrolyte system dispersed with MgO nanofillers. Ionics 18:385–394

    Article  CAS  Google Scholar 

  35. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electro Anal Chem 74:125–143

    Article  CAS  Google Scholar 

  36. Genies EM, Hany P, Santier C (1988) A rechargeable battery of the type polyaniline/propylene carbonate-LiClO 4/Li-Al. J Appl Electrochem 18:751

    Article  CAS  Google Scholar 

  37. Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2013) LiMnPO 4–A next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539

    Article  CAS  Google Scholar 

  38. Mirmohseni A, Wallace GG (2003) Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer 44:3523–3528

    Article  CAS  Google Scholar 

  39. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo SH (2000) Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth Met 110:213–217

    Article  CAS  Google Scholar 

  40. Sumeyye BS, Deniz S, Burak E, Ali EM (2015) A novel cathode material based on polystyrene with pendant TEMPO moieties obtained via click reaction and its use in rechargeable batteries. J Polym Res 22:136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhancy Mary Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmaja, S., Samuel, J.M. Chemically copolymerized poly(2-chloroaniline-co-2-ethylaniline)-composite-Zn as an anodic material in Li-ion batteries. Polym. Bull. 78, 5119–5135 (2021). https://doi.org/10.1007/s00289-020-03360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03360-8

Keywords

Navigation