Skip to main content
Log in

Synthesis and characterization of new thermally stable, antimicrobial and red-light-emitting poly(azomethine-ester)s

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two new diphenol Schiff base monomers were prepared through condensation reaction between 4-hydroxybenzaldehyde and 4,4′-diaminodiphenyl sulfone (dapsone) or 1,2-cyclohexanediamine. The resulting Schiff bases were reacted with terephthaloyl dichloride through polycondensation and formed two novel poly(azomethine-ester)s. The molecular masses of diphenol Schiff bases were determined through E.I mass spectroscopy. The elemental composition of poly(azomethine-ester)s was evaluated through CHN analysis. The structures of diphenol Schiff bases and poly(azomethine-ester)s were confirmed though FT-IR, 1HNMR, UV–Vis spectroscopy, fluorescence, SEM and thermal analysis (TG/DTA). All the synthesized compounds were fluorescent and indicated 2–4 emission bands with maximum emission intensities within 342–682 nm at different excitation wavelengths. The diphenol Schiff bases showed violet-light emission, while their derived polyesters showed red-light emission. The poly(azomethine-ester)s indicated good thermal stability (347 °C and 561 °C) which was estimated through \(T_{ \hbox{max} }\) (temperature at which rate of weight loss is maximum) value obtained from DTG (derivative thermogravimetry) graph. The synthesized compounds were also tested for their antimicrobial activities against different species of bacteria and fungi. The Schiff base having dapsone moiety showed 55% inhibition, while its derived poly(azomethine-ester) showed 40% inhibition against bacterial species Shigella flexneri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Temizkan K, Kaya İ (2017) Synthesis, characterization, electrochemical and surface morphology properties of poly (azomethine-ester) s. Polym Bull 74:2575–2592. https://doi.org/10.1007/s00289-016-1851-8

    Article  CAS  Google Scholar 

  2. Qureshi F, Khuhawar MY, Jahangir TM, Channar AH (2016) Synthesis, characterization and biological studies of new linear thermally stable Schiff base polymers with flexible spacers. Acta Chim Slov 63:113–120. https://doi.org/10.17344/acsi.2015.1994

    Article  CAS  PubMed  Google Scholar 

  3. Niu H, Huang Y, Bai X, Li X, Zhang G (2004) Study on crystallization, thermal stability and hole transport properties of conjugated polyazomethine materials containing 4,4′-bisamine-triphenylamine. Mater Chem Phys 86:33–37. https://doi.org/10.1016/j.matchemphys.2004.01.023

    Article  CAS  Google Scholar 

  4. Kil Choi M, Lim Kim H, Hack Suh D (2006) Changes of fluorescence color in novel poly (azomethine) by the acidity variation. J Appl Polym Sci 101:1228–1233. https://doi.org/10.1002/app.24209

    Article  CAS  Google Scholar 

  5. Qureshi F, Khuhawar MY, Jahangir TM (2018) Synthesis and characterization of new photoresponsive, ortho and para oriented azomethine polymers. Acta Chim Slov 65:718–729. https://doi.org/10.17344/acsi.2018.4419

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi F, Khuhawar MY, Jahangir TM (2019) New fluorescent, thermally stable and film forming polyimines containing naphthyl rings. Acta Chim Slov 66:899–912. https://doi.org/10.17344/acsi.2019.5100

    Article  CAS  PubMed  Google Scholar 

  7. Baran NY, Saçak M (2018) Preparation of highly thermally stable and conductive Schiff base polymer: molecular weight monitoring and investigation of antimicrobial properties. J Mol Struct 1163:22–32. https://doi.org/10.1016/j.molstruc.2018.02.088

    Article  CAS  Google Scholar 

  8. Qureshi F, Memon SQ, Khuhawar MY, Jahangir TM (2020) Removal of Co2+, Cu2+ and Au3+ ions from contaminated wastewater by using new fluorescent and antibacterial polymer as sorbent. Polym Bull. https://doi.org/10.1007/s00289-020-03170-y

    Article  Google Scholar 

  9. Danjani AG, Salisu AA, Usman AH (2016) Preparation and characterization of dialdehyde 2,3-diaminopyridine starch chelating polymer and its sorption potential for Cd(II), Cu(II) and Ni(II) ions in aqueous media. BAJOPAS 9:174–178. https://doi.org/10.4314/bajopas.v9i2.32

    Article  Google Scholar 

  10. Bhatt VD, Ray A (2001) Synthesis, characterization and electrical conductivity of polyesters containing azomethine linkages. Int J Polym Mater 49:355–366. https://doi.org/10.1080/00914030108039786

    Article  CAS  Google Scholar 

  11. Vasanthi BJ, Ravikumar L (2013) Synthesis and characterization of poly (azomethine ester) s with a pendent dimethoxy benzylidene group. Open J Polym Chem 3:35310. https://doi.org/10.4236/ojpchem.2013.33013

    Article  CAS  Google Scholar 

  12. Bhuvaneshwari B, Selvaraj A, Iyer NR, Ravikumar L (2015) Electrochemical investigations on the performance of newly synthesized azomethine polyester on rebar corrosion. Mater Corros 66:387–395. https://doi.org/10.1002/maco.201307472

    Article  CAS  Google Scholar 

  13. Temizkan K, Kaya İ (2017) Heat resisting and water-soluble chocolate polyesters containing azomethine group. Mater Sci Pol 35:303–312. https://doi.org/10.1515/msp-2017-0018

    Article  CAS  Google Scholar 

  14. Zhao D, Wang J, Wang X-L, Wang Y-Z (2018) Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem Eng J 344:419–430. https://doi.org/10.1016/j.cej.2018.03.102

    Article  CAS  Google Scholar 

  15. Wu J-N, Chen L, Fu T, Zhao H-B, Guo D-M, Wang X-L, Wang Y-Z (2018) New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters. Chem Eng J 336:622–632. https://doi.org/10.1016/j.cej.2017.12.047

    Article  CAS  Google Scholar 

  16. Iwan A, Palewicz M, Sikora A, Chmielowiec J, Hreniak A, Pasciak G, Bilski P (2010) Aliphatic–aromatic poly (azomethine) s with ester groups as thermotropic materials for opto (electronic) applications. Synth Met 160:1856–1867. https://doi.org/10.1016/j.synthmet.2010.06.029

    Article  CAS  Google Scholar 

  17. Nishat N, Parveen S, Dhyani S, Asma (2009) Antimicrobial polyesters containing Schiff-base metal complexes. J Coord Chem 62:1091–1099. https://doi.org/10.1080/00958970802416020

    Article  CAS  Google Scholar 

  18. Lim W-L, Oo C-W, Choo Y-S-L, Looi S-T (2015) New generation of photosensitive poly (azomethine) esters: thermal behaviours, photocrosslinking and photoluminescence studies. Polymer 71:15–22. https://doi.org/10.1016/j.polymer.2015.06.041

    Article  CAS  Google Scholar 

  19. Sanadhya SG, Oswal SL, Parmar KC (2014) Synthesis and characterization of wholly aromatic polyesters using interfacial polycondensation technique. Der Pharm Chem 6:156–163

    Google Scholar 

  20. Vini R, Murugavel SC (2020) Photoisomerization and thermal degradation kinetics of poly (ether–ester)s containing azomethine moiety in the main chain. High Perform Polym 32:47–58. https://doi.org/10.1177/0954008319850614

    Article  CAS  Google Scholar 

  21. Gong J, Yakushi Y, Uchida T, Yamazaki S, Kimura K (2011) One-pot preparation of aromatic poly (azomethine ester) fibrillar crystals using reaction-Induced crystallization. J Polym Sci A Polym Chem 49:127–137. https://doi.org/10.1002/pola.24427

    Article  CAS  Google Scholar 

  22. Şenol D, Kaya İ (2017) Synthesis and characterization of azomethine polymers containing ether and ester groups. J Saudi Chem Soc 21:505–516. https://doi.org/10.1016/j.jscs.2015.05.006

    Article  CAS  Google Scholar 

  23. Thomas O, Inganäs O, Andersson MR (1998) Synthesis and properties of a soluble conjugated poly (azomethine) with high molecular weight. Macromolecules 31:2676–2678. https://doi.org/10.1021/ma9701090

    Article  CAS  Google Scholar 

  24. Yi MH, Huang W, Jin MY, Choi K-Y (1997) Synthesis and characterization of soluble polyimides from 1,1-bis (4-aminophenyl) cyclohexane derivatives. Macromolecules 30:5606–5611. https://doi.org/10.1021/ma9703665

    Article  CAS  Google Scholar 

  25. Choi KY, Yi MH (1999) Soluble polyimides containing alicyclic structures. Macromol Symp 142:193–204. https://doi.org/10.1002/masy.19991420119

    Article  CAS  Google Scholar 

  26. Liaw D-J (1995) Synthesis and characterization of sulfone-containing polyesters derived from 4,4′-dicarboxydiphenyl sulfone by direct polycondensation. J Polym Sci A Polym Chem 33:605–613. https://doi.org/10.1002/pola.1995.080330401

    Article  CAS  Google Scholar 

  27. Mehdipour-Ataei S, Sarrafi Y, Hatami M, Akbarian-Feizi L (2005) Poly (sulfone ether amide amide) s as a new generation of soluble, thermally stable polymers. Eur Polym J 41:491–499. https://doi.org/10.1016/j.eurpolymj.2004.10.009

    Article  CAS  Google Scholar 

  28. Pettit R-K, Weber C-A, Kean M-J, Hoffmann H, Pettit G-R, Tan R, Franks K-S, Horton M-L (2005) Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49:2612–2617. https://doi.org/10.1128/aac.49.7.2612-2617.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhatt VD, Ray A (1998) Synthesis, characterization and electrical conductivity of polyesters, polyamides and doped polymers. Synth Met 92:115–120. https://doi.org/10.1016/S0379-6779(98)80100-8

    Article  CAS  Google Scholar 

  30. Channar AH, Sheikh AA, Khuhawar MY, Majidano SA, Pirzada T (2013) Preparation and characterization of new polyesters derived from schiff bases. J Chem Soc Pak 35:151–156

    CAS  Google Scholar 

  31. Kaya İ, Kılavuz E (2015) Novel multicolor Schiff base polymers prepared via oxidative polycondensation. J Fluoresc 25:663–673. https://doi.org/10.1007/s10895-015-1552-y

    Article  CAS  PubMed  Google Scholar 

  32. Kaya İ, Avcı A, Temizkan K (2017) Photophysical and thermal properties of polyazomethines containing various flexible units. Macromol Res 25:45–53. https://doi.org/10.1007/s13233-017-5002-3

    Article  CAS  Google Scholar 

  33. Mighani H, Fathollahi E, Ghaemy M (2015) An alternative method for synthesis of thermally stable aromatic polyesters containing Schiff base unites. JACR 9:103–109

    Google Scholar 

  34. Kaya İ, Kartal E, Şenol D (2015) Synthesis and characterization of polyphenol derived from Schiff bases containing methyl and carboxyl groups in the structure. Des Monomers Polym 18:524–535. https://doi.org/10.1080/15685551.2015.1041084

    Article  CAS  Google Scholar 

  35. Choi YC, Kim MS, Ryu KM, Lee SH, Jeong YG (2020) Synthesis and characterization of aromatic poly (azomethine ether) s with different meta-and para-phenylene linkage contents. Fibers Polym 21:238–244. https://doi.org/10.1007/s12221-020-9690-5

    Article  CAS  Google Scholar 

  36. AZoNano (2009) Coventry still makes transport; unique molecular delivery systems for functional polymers. https://www.azonano.com/article.aspx?ArticleID=2409

  37. Courgneau C, Rusu D, Henneuse C, Ducruet V, Lacrampe M, Krawczak P (2013) Characterisation of low-odour emissive polylactide/cellulose fibre biocomposites for car interior. Express Polym Lett 7:787–804. https://doi.org/10.3144/expresspolymlett.2013.76

    Article  CAS  Google Scholar 

  38. Lynch DE, Nawaz Y, Bostrom T (2005) Preparation of sub-micrometer silica shells using poly (1-methylpyrrol-2-ylsquaraine). Langmuir 21:6572–6575. https://doi.org/10.1021/la0506933

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Qureshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, F., Khuhawar, M.Y., Jahangir, T.M. et al. Synthesis and characterization of new thermally stable, antimicrobial and red-light-emitting poly(azomethine-ester)s. Polym. Bull. 78, 5055–5074 (2021). https://doi.org/10.1007/s00289-020-03357-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03357-3

Keywords

Navigation