Skip to main content
Log in

Understanding mechanical characteristics of pH-responsive PEG 4000-based polymeric network for colorectal carcinoma: its acute oral toxicity study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The major objective of this study is to fabricate a very promising system by loading anticancer agent in it which could be given to the cancer patients by oral administration and additionally that will liberate drugs in large intestine (affected/cancerous area). Minimum or no exposure of chemotherapeutic agents to gastric/small intestine will significantly eliminate the problem of adverse drug reactions. Cancer patients are facing severe problem of side/adverse effects due to intravenous colorectal carcinoma chemotherapy. So, an oral drug delivery system is designed to substitute the intravenous drug therapy. This study reports the synthesis of hybrid polymeric polyethylene glycol hydrogels (PEGA 4000) based on acrylic acid (AA), ammonium peroxodisulfate and ethylene glycol dimethacrylate (EGDMA) by solution polymerization method. PEGA 4000 hydrogels were used for colon targeting of hydrophilic anti-carcinoma drug (oxaliplatin). Development of new structure was confirmed by Fourier transform infrared spectroscopy. Surface morphology of developed hydrogel slabs was examined by scanning electron microscopy. Thermal gravimetric analysis of hydrogels revealed that there was an increase in thermal stability of PEGA 4000 hydrogels. Swelling study was performed in acidic and basic pH medium provided important information on drug release characteristics of hydrogels. The release of oxaliplatin (OXP) was significantly retarded at pH 1.2, while rapid release was observed at pH 7.4. The release rate of OXP increased with increasing concentration of PEG 4000 and AA. However, extent of drug release was significantly reduced on increasing concentration of EGDMA. Mechanism of release has been evaluated by applying various mathematical kinetic models. The tensile mechanical strength and elongation at break were also observed on different formulations based on various ratios of reaction contents. The consequents of our study suggest that fabricated PEGA 4000 hydrogels could serve as suitable target release delivery system and toxicity study endorsed biocompatibility of hydrogels to biological system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ray M, Pal K, Anis A, Banthia A (2010) Development and characterization of chitosan-based polymeric hydrogel membranes. Des Monomers Polym 13(3):193–206

    Article  CAS  Google Scholar 

  2. Masteikova R, Chalupova Z, Sklubalova Z (2003) Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina 39(2):19–24

    PubMed  Google Scholar 

  3. Bai XY, Yan Y, Wang L, Zhao LG, Wang K (2015) Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv 23(6):1926–1932

    PubMed  Google Scholar 

  4. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  5. Qian Y-C, Chen P-C, Zhu X-Y, Huang X-J (2015) Click synthesis of ionic strength-responsive polyphosphazene hydrogel for reversible binding of enzymes. RSC Adv 5(55):44031–44040

    Article  CAS  Google Scholar 

  6. Shantha K, Harding D (2002) Synthesis and evaluation of sucrose containing polymeric hydrogels for oral drug delivery. J Appl Polym Sci 84(14):2597–2604

    Article  CAS  Google Scholar 

  7. Can V, Abdurrahmanoglu S, Okay O (2007) Unusual swelling behavior of polymer–clay nanocomposite hydrogels. Polymer 48(17):5016–5023

    Article  CAS  Google Scholar 

  8. Patel R, Patel M (2008) Preparation, characterization, and dissolution behavior of a solid dispersion of simvastatin with polyethylene glycol 4000 and polyvinylpyrrolidone K30. J Dispersion Sci Technol 29(2):193–204

    Article  CAS  Google Scholar 

  9. Shah S, Ranjha NM, Javaid Z (2013) Development and evaluation of pH-dependent interpenetrating network of acrylic acid/polyvinyl alcohol. Iran Polym J 22(11):811–820

    Article  CAS  Google Scholar 

  10. Liu Z, Rempel G (1997) Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers. J Appl Polym Sci 64(7):1345–1353

    Article  CAS  Google Scholar 

  11. Devine DM, Higginbotham CL (2005) Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels. Eur Polym J 41(6):1272–1279

    Article  CAS  Google Scholar 

  12. Cheng G, An F, Zou M-J, Sun J, Hao X-H, He Y-X (2004) Time-and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 10(12):1769–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1):1–15

    Article  CAS  PubMed  Google Scholar 

  14. Ramteke KH, Nath L (2012) Formulation, evaluation and optimization of controlled release hydrogel microspheres for colon targeted drug delivery. J Pharm Sci Res 4(2):1739–1747

    CAS  Google Scholar 

  15. Omar S, Aldosari B, Refai H, Al Gohary O (2007) Colon-specific drug delivery for mebeverine hydrochloride. J Drug Target 15(10):691–700

    Article  CAS  PubMed  Google Scholar 

  16. Burz C, Berindan-Neagoe I, Balacescu O, Tanaselia C, Ursu M, Gog A, Vlase L, Chintoanu M, Balacescu L, Leucuta SE (2009) Clinical and pharmacokinetics study of oxaliplatin in colon cancer patients. J Gastrointestin Liver Dis 18(1):39–43

    PubMed  Google Scholar 

  17. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, Shinohara A, Eriguchi M, Yanagie H, Maruyama K (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1):143–150

    Article  CAS  PubMed  Google Scholar 

  18. Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a “smart” drug delivery system to breast cancer cell therapy. Int J Biol Macromol 65:289–297

    Article  CAS  PubMed  Google Scholar 

  19. Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohyd Polym 99:666–678

    Article  CAS  Google Scholar 

  20. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohyd Polym 71(4):682–689

    Article  CAS  Google Scholar 

  21. Liu ZL, Hu H, Zhuo RX (2004) Konjac glucomannan-graft-acrylic acid hydrogels containing azo crosslinker for colon-specific delivery. J Polym Sci Part A Polym Chem 42(17):4370–4378

    Article  CAS  Google Scholar 

  22. Rashid A, Ahmad M, Tulain UR, Iqbal FM (2015) Fabrication and evaluation of 2-hydroxyethyl methacrylate-co-acrylic acid hydrogels for sustained nicorandil delivery. Trop J Pharm Res 14(7):1121–1128

    Article  CAS  Google Scholar 

  23. Kundanati L, Singh SK, Mandal BB, Murthy TG, Gundiah N, Pugno NM (2016) Fabrication and mechanical characterization of hydrogel infused network silk scaffolds. Int J Mol Sci 17(10):1631

    Article  PubMed Central  CAS  Google Scholar 

  24. Vazquez OR, Avila IO, Juan C, Hernandez E (2016) An overview of mechanical tests for polymeric biomaterial scaffolds used in tissue engineering. J Res Updates Polym Sci 4(4):168–178

    Article  CAS  Google Scholar 

  25. Khalid I, Ahmad M, Usman Minhas M, Barkat K, Sohail M (2016) Cross-linked sodium alginate-g-poly (acrylic acid) structure: a potential hydrogel network for controlled delivery of loxoprofen sodium. Adv Polym Technol 37(4):985–995

    Article  CAS  Google Scholar 

  26. Erum A, Bashir S, Saghir S (2015) Modified and unmodified arabinoxylans from Plantago ovata husk: novel excipients with antimicrobial potential. Bangladesh J Pharmacol 10(4):765–769

    Article  Google Scholar 

  27. Zhuo RX, Li W (2003) Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci Part A Polym Chem 41(1):152–159

    Article  CAS  Google Scholar 

  28. Doshi D, Ravis W, Betageri G (1997) Carbamazepine and polyethylene glycol solid dispersions: preparation, in vitro dissolution, and characterization. Drug Dev Ind Pharm 23(12):1167–1176

    Article  CAS  Google Scholar 

  29. Li Y, Ma Q, Huang C, Liu G (2013) Crystallization of poly(ethylene glycol) in poly(methyl methacrylate) networks. Mater Sci 19(2):147–151

    CAS  Google Scholar 

  30. Caoa Y, Guana Y, Dua J, Penga Y, Yipb C, Chanbb AS (2003) Polymer network-poly(ethylene glycol) complexes with shape memory effect. Chin J Polym Sci 21(1):29–33

    Google Scholar 

  31. Mandal B, Ray SK (2013) Synthesis of interpenetrating network hydrogel from poly (acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohyd Polym 98(1):257–269

    Article  CAS  Google Scholar 

  32. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117

    CAS  Google Scholar 

  33. Kim B, Peppas NA (2003) Poly (ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed Microdevice 5(4):333–341

    Article  CAS  Google Scholar 

  34. Hussain T, Ranjha NM, Shahzad Y (2011) Swelling and controlled release of tramadol hydrochloride from a pH-sensitive hydrogel. Des Monomers Polym 14(3):233–249

    Article  CAS  Google Scholar 

  35. Murthy PK, Mohan YM, Sreeramulu J, Raju KM (2006) Semi-IPNs of starch and poly (acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. React Funct Polym 66(12):1482–1493

    Article  CAS  Google Scholar 

  36. Rao KK, Subha M, Sairam M, Halligudi S, Aminabhavi T (2006) Synthesis, characterization and controlled release characteristics of PEGylated hydrogels for diclofenac sodium. Des Monomers Polym 9(3):261–273

    Article  CAS  Google Scholar 

  37. Liu C, Desai KGH, Liu C (2005) Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000. Drug Dev Ind Pharm 31(1):1–10

    Article  PubMed  Google Scholar 

  38. Liu C, Desai KGH (2005) Characteristics of rofecoxib-polyethylene glycol 4000 solid dispersions and tablets based on solid dispersions. Pharm Dev Technol 10(4):467–477

    Article  CAS  PubMed  Google Scholar 

  39. Peppas NA, Korsmeyer RW (1987) Dynamically swelling hydrogels in controlled release applications. Hydrog Med Pharm 3:109–136

    CAS  Google Scholar 

  40. Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N (1983) Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci 72(10):1189–1191

    Article  CAS  PubMed  Google Scholar 

  41. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, Kousar M, Mahmood A (2019) pH-responsive CAP-co-poly(methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv Trans Res 9:555–577

    Article  CAS  Google Scholar 

  42. Johnson B, Beebe D, Crone W (2004) Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Mater Sci Eng C 24(4):575–581

    Article  CAS  Google Scholar 

  43. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Func Mater 14(11):1124–1128

    Article  CAS  Google Scholar 

  44. Zhong M, Liu Y-T, Xie X-M (2015) Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3(19):4001–4008

    Article  CAS  PubMed  Google Scholar 

  45. Onwusonye J, Muritala I, Odu D, Uzomba N, Ogbonnaya M, Duruamaku C (2016) Oral acute toxicity study of methanol leaf extracts of Croton Zambesicus in mice. Merit J Pharm Pharm Sci 2(1):1–5

    Google Scholar 

  46. Mahmood A, Ahmad M, Sarfraz RM, Minhas MU (2016) β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: optimization through in vitro, in vivo and toxicological evaluation. J Drug Deliv Sci Technol 36:75–88

    Article  CAS  Google Scholar 

  47. Rashmi R, Jayakumar K, Swamy MN, Bhat A (2012) Acute oral toxicity study of norfloxacin in female rats. Int J Pharma Bio Sci 3(1):98

    CAS  Google Scholar 

  48. Ali R, Ali R, Jaimini A, Nishad DK, Mittal G, Chaurasia OP, Kumar R, Bhatnagar A, Singh SB (2012) Acute and sub acute toxicity and efficacy studies of Hippophae rhamnoides based herbal antioxidant supplement. Indian J Pharmacol 44(4):504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pariyani R, Safinar Ismail I, Azam AA, Abas F, Shaari K, Sulaiman MR (2015) Phytochemical screening and acute oral toxicity study of java tea leaf extracts. BioMed Res Int. https://doi.org/10.1155/2015/742420

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Pakistan, which rendered us all conveniences, chemicals and equipment to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkat, K., Ahmad, M., Minhas, M.U. et al. Understanding mechanical characteristics of pH-responsive PEG 4000-based polymeric network for colorectal carcinoma: its acute oral toxicity study. Polym. Bull. 78, 5075–5101 (2021). https://doi.org/10.1007/s00289-020-03356-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03356-4

Keywords

Navigation