Skip to main content
Log in

Enzymatic degradation of aqueous dextrans as affected by initial molecular weight and concentration

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dextrans with different initial molecular weights (IMW) ranging from 3.86 × 104 Da to 2.15 × 106 Da were enzymatically degraded by dextranase enzyme. The changes in weight-average molecular weight (Mw), polydispersity index (D value) and the percentage of 104–105 Da fragment of aqueous dextran were examined during 0–120 min enzymatic degradation. Results showed that the Mw of all dextran samples decreased with increasing enzymatic time. A significant molecular weight degradation occurred in dextran samples that had a higher IMW and at an early degradation stage. With increasing the degradation time, the percentage of the 104–105 Da in four dextran samples (Dex-270, Dex-1000, Dex-2000 and Dex-F) showed a remarkable growth at the beginning of the treatment (0–50 min). Experimental data indicated that all dextran samples (with different IMW and at different concentration) followed a second-order degradation kinetics. This study demonstrated a great potential for further production of low molecular weight dextrans with a more homologous molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kothari D, Goyal A (2013) Structural characterization of enzymatically synthesized dextran and oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase. Biochemistry (Moscow) 78(10):1164–1170

    Article  CAS  Google Scholar 

  2. Vettori MHP, Mukerjea R, Robyt JF (2011) Comparative study of the efficacies of nine assay methods for the dextransucrase synthesis of dextran. Carbohyd Res 346(9):1077–1082

    Article  CAS  Google Scholar 

  3. Chaudhary R, Jain S, Muralidhar K, Gupta M (2006) Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran. Process Biochem 41(3):562–566

    Article  CAS  Google Scholar 

  4. Bejar W, Gabriel V, Amari M, Morel S, Mezghani M, Maguin E, Fontagnéfaucher C, Bejar S, Chouayekh H (2013) Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int J Biol Macromol 52(1):125–132

    Article  CAS  Google Scholar 

  5. Bark BP, Grände PO (2014) Infusion rate and plasma volume expansion of dextran and albumin in the septic guinea pig. Acta Anaesthesiol Scand 58(1):44–51

    Article  CAS  Google Scholar 

  6. Zdolsek H, Vegfors M, Lindahl T, Törnquist T, Bortnik P, Hahn R (2011) Hydroxyethyl starches and dextran during hip replacement surgery: effects on blood volume and coagulation. Acta Anaesthesiol Scand 55(6):677–685

    Article  CAS  Google Scholar 

  7. Belder A (2003) Dextran, handbook. Amersham Biosciences, Little Chalfont

    Google Scholar 

  8. Hussain I, Bhoyroo J, Butcher A, Koch TA, He A, Bregman DB (2013) Direct comparison of the safety and efficacy of ferric carboxymaltose versus iron dextran in patients with iron deficiency anemia. Anemia 2013:169107

    Article  Google Scholar 

  9. Falconer DJ, Mukerjea R, Robyt JF (2011) Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohyd Res 346(2):280–284

    Article  CAS  Google Scholar 

  10. Kim D, Robyt JF, Lee S-Y, Lee J-H, Kim Y-M (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohyd Res 338(11):1183–1189

    Article  CAS  Google Scholar 

  11. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80(8):845–860

    Article  CAS  Google Scholar 

  12. Robyt JF, Kimble BK, Walseth TF (1974) The mechanism of dextransucrase action: direction of dextran biosynthesis. Arch Biochem Biophys 165(2):634–640

    Article  CAS  Google Scholar 

  13. Shukla S, Shi Q, Maina NH, Juvonen M, Goyal A (2014) Weissella confusa Cab3 dextransucrase: properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohyd Polym 101:554–564

    Article  CAS  Google Scholar 

  14. Chen S, Liu L, Lu J, Han Z, Xu Y, Mo H (2008) Clinical dextran purified by electric ultrafiltration coupling with solvent crystallization. C R Chim 11(1):80–83

    Article  CAS  Google Scholar 

  15. Guimarães D, Costa F, Rodrigues M, Maugeri F (1999) Optimization of dextran synthesis and acidic hydrolysis by surface response analysis. Braz J Chem Eng 16(2):129–139

    Article  Google Scholar 

  16. Wu D-T, Zhang H-B, Huang L-J, Hu X-Q (2011) Purification and characterization of extracellular dextranase from a novel producer, Hypocrea lixii F1002, and its use in oligodextran production. Process Biochem 46(10):1942–1950

    Article  CAS  Google Scholar 

  17. Pu Y, Zou Q, Hou D, Zhang Y, Chen S (2017) Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation. Carbohyd Polym 156:71–76

    Article  CAS  Google Scholar 

  18. Zou Q, Pu Y, Han Z, Fu N, Li S, Liu M, Huang L, Lu A, Mo J, Chen S (2012) Ultrasonic degradation of aqueous dextran: effect of initial molecular weight and concentration. Carbohyd Polym 90(1):447–451

    Article  CAS  Google Scholar 

  19. Walker GJ, Pulkownik A (1974) Action of α-1,6-glucan glucohydrolase on oligosaccharides derived from dextran. Carbohyd Res 36(1):53–66

    Article  CAS  Google Scholar 

  20. Kim D, Day DF (1994) A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb Technol 16(10):844–848

    Article  CAS  Google Scholar 

  21. Gan W, Zhang H, Zhang Y, Hu X (2014) Biosynthesis of oligodextrans with different Mw by synergistic catalysis of dextransucrase and dextranase. Carbohyd Polym 112:387–395

    Article  CAS  Google Scholar 

  22. Iqbal S, Marchetti R, Aman A, Silipo A, Qader SAU, Molinaro A (2017) Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel diffusion-ordered NMR spectroscopy. Int J Biol Macromol 103:744–750

    Article  CAS  Google Scholar 

  23. PleszczyŃSka M, Szczodrak J, Rogalski J, Fiedurek J (1997) Hydrolysis of dextran by Penicillium notatum dextranase and identification of final digestion products. Mycol Res 101(1):69–72

    Article  Google Scholar 

  24. Virgen-Ortíz J, Ibarra-Junquera V, Escalante-Minakata P, Ornelas-Paz J, Osuna-Castro J, González-Potes A (2015) Kinetics and thermodynamic of the purified dextranase from Chaetomium erraticum. J Mol Catal B Enzym 122:80–86

    Article  Google Scholar 

  25. Kim Y-M, Shimizu R, Nakai H, Mori H, Okuyama M, Kang M-S, Fujimoto Z, Funane K, Kim D, Kimura A (2011) Truncation of N-and C-terminal regions of Streptococcus mutans dextranase enhances catalytic activity. Appl Microbiol Biotechnol 91(2):329–339

    Article  CAS  Google Scholar 

  26. Eggleston G, Monge A (2005) Optimization of sugarcane factory application of commercial dextranases. Process Biochem 40(5):1881–1894

    Article  CAS  Google Scholar 

  27. Zou QS, Pu YY, Li SX, Wang Q, Wang X, Chen S (2011) Ultrasonic degradation of dextran in aqueous solution. Adv Mater Res 396–398:1624–1627

    Article  Google Scholar 

  28. Tayal A, Pai VB, Khan SA (1999) Rheology and microstructural changes during enzymatic degradation of a Guar–Borax hydrogel. Macromolecules 32(17):5567–5574

    Article  CAS  Google Scholar 

  29. And AT, Khan SA (2000) Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules 33(26):9488–9493

    Article  Google Scholar 

  30. Basedow AM (1980) Studies on the enzymatic hydrolysis of dextran. Polym Bull 2(5):337–342

    Article  CAS  Google Scholar 

  31. Diao Y, Song M, Zhang Y, Shi LY, Lv Y, Ran R (2017) Enzymic degradation of hydroxyethyl cellulose and analysis of the substitution pattern along the polysaccharide chain. Carbohyd Polym 169:92

    Article  CAS  Google Scholar 

  32. Tayal A, Kelly RM, Khan SA (1999) Rheology and molecular weight changes during enzymatic degradation of a water-soluble polymer. Macromolecules 32(2):294–300

    Article  CAS  Google Scholar 

  33. Tsuru D, Hiraoka N, Fukumoto J (1972) Studies on mold dextranases: IV. substrate specificity of Aspergillus carneus dextranase. J Biochem 71(4):653–660

    CAS  PubMed  Google Scholar 

  34. Webb E, Spencer-Martins I (1983) Extracellular endodextranase from the yeast Lipomyces starkeyi. Can J Microbiol 29(9):1092–1095

    Article  CAS  Google Scholar 

  35. Kilz DHP (2014) Tips and tricks: GPC/SEC from a chromatogram to the molar mass distribution. Spectroscopy

  36. Eggleston G, Dilks A, Blowers M, Winters K (2011) Successful application of dextranase in sugar beet factories. In: Proceedings of the American Society of Sugarbeet Technologists Meeting, New Mexico, pp 1–16

  37. Purama RK, Goyal A (2008) Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostocmesenteroides NRRL B-640 using statistical approach. Biores Technol 99(15):7108–7114

    Article  CAS  Google Scholar 

  38. Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl Biochem Biotechnol 141(2):377–390

    Article  CAS  Google Scholar 

  39. Kanwal F, Liggat JJ, Pethrick RA (2000) Ultrasonic degradation of polystyrene solutions. Polym Degrad Stab 68(3):445–449

    Article  CAS  Google Scholar 

  40. Tsaih ML, Tseng LZ, Chen RH (2004) Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polym Degrad Stab 86(1):25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Project of National Natural Science Foundation of China (Grand Nos. 21264003 and 21768001) for the support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Pu, Y., Zou, Q. et al. Enzymatic degradation of aqueous dextrans as affected by initial molecular weight and concentration. Polym. Bull. 78, 4863–4876 (2021). https://doi.org/10.1007/s00289-020-03351-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03351-9

Keywords

Navigation