Skip to main content
Log in

Conjugation of insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]zinc(II) with chitosan in aqueous solution: kinetics, equilibrium and thermodynamics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conjugation of insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]Zn(II), Zn(tpps), with chitosan was examined in aqueous solution at various contact time, Zn(tpps) concentrations and solution temperatures, respectively. The chitosan–Zn(tpps) conjugate was characterized by UV–Vis and Fourier transform infrared (FTIR) spectroscopic techniques. The electrostatic interaction between negatively charged sulfonate \(({\mathrm{SO}}_{3}^{-})\) groups of Zn(tpps) and positively charged amino (\({\mathrm{NH}}_{3}^{+}\)) groups of chitosan is responsible for the formation of chitosan–Zn(tpps) conjugate. Chitosan efficiently inhibits the demetallization and aggregation of Zn(tpps) in acidic aqueous solution. The conjugation kinetic data taken from various batch studies were examined by the pseudo-first-order, pseudo-second-order, Elovich kinetic, film diffusion and intra-particle diffusion models. The equilibrium conjugation isotherms were analyzed by Freundlich, Temkin and Langmuir isotherm models, respectively. The batch conjugation kinetic data were obeyed by the pseudo-second-order kinetic model rather than the pseudo-first-order and Elovich kinetic models. Equilibrium conjugation isotherms were explained well by the Langmuir isotherm model, and the highest extent of Zn(tpps) bound to chitosan was obtained to be 151.52 µmol/g at 45 °C. The activation energy (Ea: 10.21 kJ/mol), changes in Gibb’s free energy (∆G: –26.38 to –28.12 kJ/mol), enthalpy (∆H: 8.74 kJ/mol) and entropy (∆S: 115.94 J/mol K) suggest that the chitosan–Zn(tpps) conjugation is an endothermic spontaneous process. The in vitro release of Zn(tpps) from chitosan–Zn(tpps) conjugate was investigated in phosphate buffer solution (pH 7.4) at 37 °C. The kinetics of Zn(tpps) release followed the first-order kinetics with a rate constant 0.0025 h‒1. The chitosan–Zn(tpps) conjugate may be used as an oral therapeutics for diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

taken from b); and (d) a plot log [residual Zn(tpps) (%)] versus time (data were taken from b)

Similar content being viewed by others

References

  1. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G (2019) Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci 20:5092–5113

    CAS  PubMed Central  Google Scholar 

  2. Komi DEA, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411–427

    Google Scholar 

  3. Xiao F, Cheng J, Cao W, Yang C, Chen J, Luo Z (2019) Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars. J Colloid Interface Sci 540:579–584

    CAS  PubMed  Google Scholar 

  4. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    CAS  PubMed  Google Scholar 

  5. Karmaker S, Nag AJ, Saha TK (2019) Adsorption of remazol brilliant violet onto chitosan 10B in aqueous solution: kinetics, equilibrium and thermodynamics studies. Cellulose Chem Technol 53:373–386

    CAS  Google Scholar 

  6. Saha TK, Karmaker S, Ichikawa H, Fukumori Y (2005) Mechanisms and kinetics of trisodium 2-hydroxy-1,1′-azonaphthalene-3,4′,6-trisulfonate adsorption onto chitosan. J Colloid Interface Sci 286:433–439

    CAS  PubMed  Google Scholar 

  7. Karmaker S, Sen T, Saha TK (2015) Adsorption of reactive yellow 145 onto chitosan in aqueous solution: kinetic modeling and thermodynamic analysis. Polym Bull 72:1879–1897

    CAS  Google Scholar 

  8. Karmaker S, Sintaha F, Saha TK (2019) Kinetics, isotherm and thermodynamic studies of the adsorption of reactive red 239 dye from aqueous solution by chitosan 8B. Adv Biol Chem 9:1–22

    CAS  Google Scholar 

  9. Imran M, Ramzan M, Qureshi AK, Khan MA, Tariq M (2018) Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors 8:95–111

    CAS  PubMed Central  Google Scholar 

  10. Ptaszynska AA, Trytek M, Borsuk G, Buczek K, Rybicka-Jasinska K, Gryko D (2018) Porphyrins inactivate Nosema spp. microsporidia. Sci Rep 8:5523

    PubMed  PubMed Central  Google Scholar 

  11. Varchi G, Foglietta F, Canaparo R, Ballestri M, Arena F, Sotgiu G, Fanti S (2015) Engineered porphyrin loaded core–SHELL nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine 10:3483–3494

    CAS  PubMed  Google Scholar 

  12. Saha TK, Frauendorf H, John M, Dechert S, Meyer F (2013) Efficient oxidative degradation of azo dyes by a water-soluble manganese porphyrin catalyst. ChemCatChem 5:796–805

    CAS  Google Scholar 

  13. Huang H, Song W, Rieffel J, Lovell JF (2015) Emerging applications of porphyrins in photomedicine. Fron Phys 3:1–23

    Google Scholar 

  14. Cheng W, Haedicke IE, Nofiele J, Martinez F, Beera K, Scholl TJ, Zhang XA (2014) Complementary strategies for developing Gd-free high-field T1 MRI contrast agents based on MnIII porphyrins. J Med Chem 57:516–520

    CAS  PubMed  Google Scholar 

  15. Hammerer F, Garcia G, Chen S, Poyer F, Achelle S, Fiorini-Debuisschert C, Maillard P (2014) Synthesis and characterization of glycoconjugated porphyrin triphenylamine hybrids for targeted two-photon photodynamic therapy. J Org Chem 79:1406–1417

    CAS  PubMed  Google Scholar 

  16. Dong X, Chen H, Qin J, Wei C, Liang J, Liu T, Lv F (2017) Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo. Drug Deliv 24:641–650

    CAS  PubMed  Google Scholar 

  17. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Huang B (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Saha TK, Yoshikawa Y, Sakurai H (2007) A [meso-Tetrakis(4-sulfonatophenyl)porphy-rinato] zinc(II) complex as an oral therapeutic for the treatment of type 2 diabetic KKAy mice. ChemMedChem 2:218–225

    CAS  PubMed  Google Scholar 

  19. Chytil P, Koziolová E, Etrych T, Ulbrich K (2018) HPMA copolymer-drug conjugates with controlled tumor-specific drug release. Macromol Biosci 18:1700209

    Google Scholar 

  20. Minrath I, Arbeiter D, Schmitz KP, Sternberg K, Petersen S (2014) In vitro characterization of polyacrylamide hydrogels for application as implant coating for stimulus-responsive local drug delivery. Polym Adv Technol 25:1234–1241

    CAS  Google Scholar 

  21. Kim W, Yang Y, Kim D, Jeong S, Yoo J, Yoon JH, Jung Y (2017) Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes. Drug Des Devel Ther 11:419–429

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar TMP, Umesh HM, Shivakumar HG, Ravi V, Siddaramaiah (2007) Feasibility of polyvinyl alcohol as a transdermal drug delivery system for terbutaline sulphate. J Macromol Sci A 44:583–589

    CAS  Google Scholar 

  23. Karmaker S, Saha TK, Yoshikawa Y, Yasui H, Sakurai H (2006) A novel drug delivery system for type 1 diabetes: insulin-mimetic vanadyl-poly(c-glutamic acid) complex. J Inorg Biochem 100:1535–1546

    CAS  PubMed  Google Scholar 

  24. Saha TK, Ichikawa H, Fukumori Y (2006) Gadolinium diethylenetriaminopetaaceitic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy. Carbohydr Res 341:2835–2841

    CAS  PubMed  Google Scholar 

  25. Yu X, Wen T, Cao P, Shan L, Li L (2019) Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. J Colloid Interface Sci 556:258–265

    CAS  PubMed  Google Scholar 

  26. Schnürch AB, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Google Scholar 

  27. Lee E, Lee J, Jon S (2010) A novel approach to oral delivery of insulin by conjugating with low molecular weight chitosan. Bioconjug Chem 21:1720–1723

    CAS  PubMed  Google Scholar 

  28. El-Refaey A, Shaban SY, El-Kemary M, El-Khouly M (2017) Spectroscopic and thermodynamic studies of light harvesting perylenediimide derivative-zinc porphyrin complex in aqueous media. Spectrochim Acta Part A 186:132–139

    CAS  Google Scholar 

  29. Shanmugam S, Xu J, Boyer C (2016) A logic gate for external regulation of photopolymerization. Polym Chem 7:6437–6449

    CAS  Google Scholar 

  30. Synytsya A, Synytsya A, Blafkova P, Ederova J, Spevacek J, Slepicka P, Kral V, Volka K (2009) pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin-chitosan complexes. Biomacromol 10:1067–1076

    CAS  Google Scholar 

  31. Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim S-K (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials 7:3946–3955

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y-H, Chen D-M, He T, Liu F-C (2003) Raman and infrared spectral study of meso-sulfonatophenyl substituted porphyrins (TPPSn, n = 1, 2A, 2O, 4, 4). Spectrochim Acta Part A 59:87–101

    Google Scholar 

  33. Brijmohan SB, Swier S, Weiss RA, Shaw MT (2005) Synthesis and characterization of cross-linked sulfonated polystyrene nanoparticles. Ind Eng Chem Res 44:8039–8045

    CAS  Google Scholar 

  34. Tesolekile N, Ncapayi V, Obiyenwa GK, Matoetoe M, Songca S, Oluwafemi OS (2019) Synthesis of meso-tetra-(4-sulfonatophenyl)porphyrin (TPPS4)-CuInS/ZnS quantum dots conjugate as an improved photosensitizer. Int J Nanomed 14:7065–7078

    Google Scholar 

  35. Kumar S, de Silva JA, Wani MY, Gil JM, Sobral AJFN (2017) Carbon dioxide capture and conversion by an environmentally friendly chitosan based meso-tetrakis(4-sulfonatophenyl) porphyrin. Carbohydr Polym 175:575–583

    CAS  PubMed  Google Scholar 

  36. Wang X, Zhao L, Ma R, An Y, Shi L (2010) Stability enhancement of ZnTPPS in acidic aqueous solutions by polymeric micelles. Chem Commun 46:6560–6562

    CAS  Google Scholar 

  37. Akter B, Khan AI, Karmaker S, Ghosh P, Saha S, Polash SA, Islam Z, Sarker SR, Hossain MS, Yasui H, Saha TK (2020) Chelation of zinc(II) with poly(γ-glutamic acid) in aqueous solution: kinetics, binding constant and its antimicrobial activity. Polym Bull. https://doi.org/10.1007/s00289-020-03165-9

    Article  Google Scholar 

  38. Saha TK, Karmaker S, Alam MF (2014) Kinetics, mechanism and thermodynamics involved in sorption of meso-tetrakis(4-sulfonatophenyl)-porphyrin onto chitosan in aqueous medium. J Porphyr Phthalocya 8:240–250

    Google Scholar 

  39. Saha TK, Bhoumik NC, Karmaker S, Ahmed MG, Ichikawa H, Fukumori Y (2011) Adsorption characteristics of reactive black 5 from aqueous solution onto chitosan. Clean Soil Air Water 39:984–993

    CAS  Google Scholar 

  40. Vijayakumar G, Dharmendrirakumar M, Renganathan S, Sivanesan S, Baskar G, Elango KP (2009) Removal of congo red from aqueous solutions by perlite. Clean Soil Air Water 37:355–364

    CAS  Google Scholar 

  41. Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous Ssolution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    CAS  PubMed  Google Scholar 

  42. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    CAS  Google Scholar 

  43. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  44. McKay G, Ho YS (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–456

    Google Scholar 

  45. Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of nonelectrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR Otd Khim Nauk 2:209–216

    Google Scholar 

  46. Onal Y, Basar CA, Ozdemir CS (2007) Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J Hazard Mater 146:194–203

    CAS  PubMed  Google Scholar 

  47. WeberMorris WJJRJC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Proc Am Soc Civil Eng 89:31–59

    Google Scholar 

  48. Pan M, Lin X, Xie J, Huang X (2017) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified polygorskite nano-composites. RSC Adv 7:4492–4500

    CAS  Google Scholar 

  49. Cheng C, Deng J, Lei B, He A, Zhang X, Ma L, Li S, Zhao C (2013) Toward 3D grapheme oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J Hazard Mater 263:467–478

    CAS  PubMed  Google Scholar 

  50. Freundlich H (1906) Adsorption in solutions. Z Phys Chemei 57:384–470

    Google Scholar 

  51. Temkin MI, Pyzhev V (1940) Kinetic of ammonia synthesis on promoted iron catalyst. Acta Physiochim URSS 12:327–356

    CAS  Google Scholar 

  52. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Google Scholar 

  53. Petrolekas PD, Maggenakis G (2007) Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite. Ind Eng Chem Res 46:1326–1332

    CAS  Google Scholar 

  54. Saha TK, Mahmud MF, Karmaker S, Sen T (2012) Adsorption of [meso-tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV) (4–) onto chitosan in aqueous solution. Polym Bull 68:1483–1500

    CAS  Google Scholar 

  55. Gupta VK, Srivastava SK, Mohan D (1997) Equilibrium uptake, Sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res 36:2207–2218

    CAS  Google Scholar 

Download references

Acknowledgements

The authors have declared no conflict of interest. We are indebted to the Ministry of Education, Government of the People’s Republic of Bangladesh, for giving research Grants (FY 2015-2016, 2016-2017 and 2017-2018) to Prof. Dr. Tapan Kumar Saha to complete the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervin, S., Shaha, C.K., Karmaker, S. et al. Conjugation of insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]zinc(II) with chitosan in aqueous solution: kinetics, equilibrium and thermodynamics. Polym. Bull. 78, 4527–4550 (2021). https://doi.org/10.1007/s00289-020-03331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03331-z

Keywords

Navigation