Skip to main content

Advertisement

Log in

Improved thermal stability metal oxide/GO-based hybrid materials for enhanced Anti-inflammatory and Antioxidant activity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a series of metal oxide/graphene oxide hybrid heterostructures were synthesized by a solution phase in situ method without the use of any template or surfactant. The as-synthesized materials were characterized by different characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Raman and transmission electron microscopy (TEM). It was found that the surface of graphene oxide was decorated highly by different metal oxide (MeO) nanoparticles. Further, thermogravimetric analysis (TGA) measurements showed the enhanced thermal stability of graphene oxide (GO) with respect to oxygen functional groups in composites. The as-synthesized materials, i.e., GO, pure MeO and MeO/GO nanocomposites were examined for antioxidant activity using in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Considerable in vitro antioxidant activities in a concentration-dependent manner were recorded. Interestingly, composite TiO2-GO showed more elevated scavenging efficiency than GO in DPPH tests. Also, in vitro anti-inflammatory activity of MeO-GO nanocomposites was evaluated using inhibition of protein denaturation. The nanocomposites CdO/GO and Ag2O/GO show significant increase in the protein denaturation inhibition ability when compared with GO.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  2. Ahmed YY, Raouf MA, Amr MA, Abdelrazek EM (2018) Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J Mater Sci Mater Electron 29:15931–15945

    Google Scholar 

  3. Sharma M, Behl K, Nigam S, Monika Joshi (2018) TiO2-GO nanocomposite for energy and environmental applications: a green synthesis approach. Vacuum 156:434–439

    CAS  Google Scholar 

  4. Ahmed YY, Raouf MA, Abdelrazek EM, Morsi MA, Amr MA (2019) Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J Mater Res Technol 8:111–1120

    Google Scholar 

  5. Fu T, Shen Y, Alajmi Z, Wang Y, Yang S, Li G (2014) Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceram Int 40:12423–12429

    CAS  Google Scholar 

  6. Chabot V, Higgins D, Yu A, Ziao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 5:1564–1596

    Google Scholar 

  7. Szafranek BN, Fiori G, Schall D, Neumaier D, Kurz H (2012) Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett 12:1324–1328

    CAS  PubMed  Google Scholar 

  8. Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS (2014) A review of graphene-based electrochemical micro-supercapacitors. Electroanalysis 26:30–51

    CAS  Google Scholar 

  9. Raut P, Liang W, Chen Yu-M, Zhu Y, Jana SC (2017) Syndiotactic polystyrene-based ionogel membranes for high temperature electrochemical applications. ACS Appl Mater Interfaces 9:30933–30942

    CAS  PubMed  Google Scholar 

  10. Raut P, Liang W, Chen Yu-M, Zhu Y, Jana SC (2019) Strong and flexible composite solid polymer electrolyte membranes for Li-ion batteries. ACS Omega 4:18203–18209

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cong HP, Chen JF, Yu SH (2014) Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem Soc Rev 43:7295–7325

    CAS  PubMed  Google Scholar 

  12. Wang X, Song M (2013) Toughening of polymers by graphene. Nanomater Energy 2:265–278

    Google Scholar 

  13. Jia Y, Zheng Y, Jaroniec M, Qiao SZ (2014) Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J Am Chem Soc 136:4394–4403

    Google Scholar 

  14. Jingquan L, Liang C, Dusan L (2013) Acta Biomater 9:9243–9257

    Google Scholar 

  15. Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU (2014) A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 30:1281–1294

    CAS  PubMed  Google Scholar 

  16. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    CAS  PubMed  Google Scholar 

  17. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14:316–323

    CAS  Google Scholar 

  19. Jacob SP, Bharathkumar R, Ashwathram G (2014) Aspergillus niger mediated synthesis of ZnO nanoparticles and their antimicrobial and in vitro anticancerous activity. World J Pharm Res 3:3044–3054

    Google Scholar 

  20. Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY (2017) Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomed 12:6059–6073

    CAS  Google Scholar 

  21. Salunkhe RR, Lee YH, Chang KH (2014) Ultrahigh performance supercapacitors utilizing core shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chem Eur J 20:1–16

    Google Scholar 

  22. Salunkhe RR, Tang J, Kobayashi N, Kim J, Ide Y, Tominaka S, Kim JH, Yamauchi Y (2016) Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci 7:5704–5713

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nat Chem 8:638–639

    CAS  PubMed  Google Scholar 

  24. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) MOF derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308

    CAS  PubMed  Google Scholar 

  25. Sarkar C, Dolui SK (2015) Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv 5:60763–60769

    CAS  Google Scholar 

  26. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphenebased photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    CAS  PubMed  Google Scholar 

  28. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288

    CAS  PubMed  Google Scholar 

  29. Duru I, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from waste water. J Mater Sci 51:6097–6116

    CAS  Google Scholar 

  30. Li X, Huang X, Liu D, Wang X, Song S, Zhou L, Zhang H (2011) Synthesis of 3D-hierarchiral Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573

    CAS  Google Scholar 

  31. Jastrzebska AM, Olszyna AR (2015) New reduced graphene oxide/alumina (RGO/Al2O3) nanocomposite: innovative method of synthesis and characterization. Int J Appl Ceram Technol 12:522–528

    CAS  Google Scholar 

  32. Ahmad J, Majid K (2018) Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants. New J Chem 42:3246–3259

    CAS  Google Scholar 

  33. Yang B, Liu Z, Guo Z, Zhang W, Wan M, Qin X, Zhong H (2014) In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl Surf Sci 316:22–27

    CAS  Google Scholar 

  34. Ahmad J, Majid K (2018) In-situ synthesis of visible-light responsive Ag2O/graphene oxide nanocomposites and effect of graphene oxide content on its photocatalytic activity. Adv Compos Hybrid Mater 1:374–388

    CAS  Google Scholar 

  35. Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O, Miki-Yoshida M, Rojas-Villalobos M, García-Guaderrama M, Aguilar-Martínez JA (2015) Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. J Alloy Compd 647:627–636

    CAS  Google Scholar 

  36. Menaga D, Rajakumar S, Ayyasamy PM (2013) Free radical scavenging activity of methanolic extract of Pleurotus florida mushroom. Int J Pharm Pharm Sci 5:601–606

    Google Scholar 

  37. Elias G, Rao MN (1988) Inhibition of albumin denaturation and antiinflammatory activity of dehydrozingerone and its analogs. Indian J Exp Biol 26:540–542

    CAS  PubMed  Google Scholar 

  38. Ahmad J, Majid K, Abdullah M (2018) Controlled synthesis of p-type NiO/n-type GO nanocomposite with enhanced photocatalytic activity and study of temperature effect on the photocatalytic activity of the nanocomposite. Appl Surf Sci 457:417–426

    CAS  Google Scholar 

  39. Wan X, Yuan M, Shao-L Tiea, Lan S (2013) Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Appl Surf Sci 277:40–46

    CAS  Google Scholar 

  40. Qu B, Hu L, Chen Y, Li C, Li Q, Wang Y, Wei W, Chen L, Wang T (2013) Rational design of Au–NiO hierarchical structures with enhanced rate performance for supercapacitors. J Mater Chem A 1:7023–7026

    CAS  Google Scholar 

  41. Wang G, Ma XC, Huang BB, Cheng HF, Wang ZY, Zhan J, Qin XY, Zhang XY, Dai Y (2012) Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J Mater Chem 22:21189–21194

  42. Kaviyarasu K, Manikandan E, Paulraj P, Mohamed SB, Kennedy J (2014) One dimensional well-aligned CdO nanocrystal by solvothermal method. J Alloys Comp 593:67–70

    CAS  Google Scholar 

  43. Aldwayyan AS, Al-Jekhedab FM, Al-Noaimi M, Hammouti B, Hadda TB, Suleiman M, Warad I (2013) Synthesis and characterization of CdO nanoparticles starting from organometalic Dmphen-CdI2 complex. Int J Electrochem Sci 8:10506–10514

    CAS  Google Scholar 

  44. Zhang Y, Tang ZR, Fu X, Xu YJ (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2 graphene truly different from other TiO2 carbon composite materials. ACS Nano 4:7303–7314

    CAS  PubMed  Google Scholar 

  45. Qiu J, Zhang P, Ling L, Li S, Liu P, Zhao H, Zhang S (2012) Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces 4:3636–3642

    CAS  PubMed  Google Scholar 

  46. Ahmad J, Sofi FA, Mehraj O, Majid K (2018) Fabrication of highly photocatalytic active anatase TiO2-graphene oxide heterostructures via solid phase ball milling for environmental remediation. Surf Interfaces 13:186–195

    CAS  Google Scholar 

  47. Yadav HM, Kim J (2016) Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2016.07.133

    Article  Google Scholar 

  48. Xia H, Yang G (2012) Facile synthesis of inorganic nanoparticles by a precipitation method in molten ε-caprolactam solvent. J Mater Chem 22:18664–18670

    CAS  Google Scholar 

  49. Jiang Y, Chen D, Song J, Zheng Jiao, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2012) A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim Acta 91:173–178

    Google Scholar 

  50. Jambure SB, Lokhande CD (2013) Photoelectrochemical solar cells with chemically grown CdO rice grains on flexible stainless steel substrates. Mater Lett 106:133–136

    CAS  Google Scholar 

  51. Yang Y, Xu L, Wang H, Wang W, Zhang L (2016) TiO2/graphene porous composite and its photocatalytic degradation of methylene blue. Mater Des 108:632–639

    CAS  Google Scholar 

  52. Luo QP, Yu XY, Lei BX, Chen HY, Kuang DB, Su CY (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116:8111–8117

    CAS  Google Scholar 

  53. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21:18792–18798

    CAS  Google Scholar 

  54. Waterhouse GIN, Bowmaker GA, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys 3:3838–3845

    CAS  Google Scholar 

  55. Mali SS, Shinde PS, Betty CA, Bhosale PN, Lee WJ, Patil PS (2011) Nanocoral architecture of TiO2 by hydrothermal process: synthesis and characterization. Appl Surf Sci 257:9737–9746

    CAS  Google Scholar 

  56. Lubas M, Jasinski JJ, Sitarz M, Kurpaska L, Podsiad P, Jasinski J (2014) Raman spectroscopy of TiO2 thin films formed by hybrid treatment for biomedical applications. Spectrochim Acta Part A Mol Biomol Spectrosc 133:867–871

    CAS  Google Scholar 

  57. Raut P, Swanson N, Kulkarni A, Pugh C, Jana SC (2018) Expolioting arene-perfloroarene interactions for dispersion of carbon black in rubber compounds. Polymer 148:247–258

    CAS  Google Scholar 

  58. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    CAS  Google Scholar 

  59. Rana UA, Basharat F, Serwar M, Shahid M (2015) Heat treatment of electrodeposited NiO films for improved catalytic water oxidation. RSC Adv. https://doi.org/10.1039/C5RA17041A

    Article  Google Scholar 

  60. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polymer J 42:1362–1369

    CAS  Google Scholar 

  61. Zhang D, Cui S, Yang J (2017) Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light. J Alloy Compd 708:1141–1149

    CAS  Google Scholar 

  62. Sivakumar S, Venkatesan A, Soundhirarajan P, Khatiwada CP (2015) Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 151:760–772

    CAS  Google Scholar 

  63. Wang F, Zhang H, Zhu H, Guo Y (2014) Ultra-hydrophobic modification of TiO2 nanoparticles via thermal decomposition of polytetrafluoroethylene. Powder Technol 253:548–552

    CAS  Google Scholar 

  64. Naik GH, Priyadarsini KI, Satav JG, Bana-waliker MM, Sohani DP, Biyani MK, Mohan H (2003) Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry 63:97–104

    CAS  PubMed  Google Scholar 

  65. Suresha D, Pavan Kumar MA, Nagabhushan H, Sharma SH (2015) Cinnamon supported facile green reduction of grapheme oxide, its elimination and antioxidant activities. Mater Lett 151:93–95

    Google Scholar 

  66. Sakat S, Juvekar AR, Gambhire MN (2010) In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci 2:146–155

    Google Scholar 

  67. Aggarwal H, Nakara A, Shanmugam VK (2019) Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother 109:2561–2572

    Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to NIT Srinagar for help and support. The award of senior Research Fellowship to JA from CSIR New Delhi is highly acknowledged [File No. 09/984(0003)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kowsar Majid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Majid, K. Improved thermal stability metal oxide/GO-based hybrid materials for enhanced Anti-inflammatory and Antioxidant activity. Polym. Bull. 78, 3889–3911 (2021). https://doi.org/10.1007/s00289-020-03304-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03304-2

Keywords

Navigation