Skip to main content
Log in

Importance of gelatin, nanoparticles and their interactions in the formulation of biodegradable composite films: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study reviews the importance of gelatin, nanoparticles and their interactions in the formulation of biodegradable composite films. Gelatin is widely used in packaging because of its unique characteristics, i.e., film-forming ability and barrier properties. However, high moisture sensitivity and hydrophilic nature of gelatin restrict its application in food packaging. Therefore, gelatin is used in the formulation of composite films with better functional and barrier properties for food packing. The incorporation of nanoparticles (NPs) in gelatin film-forming solution improves the mechanical, thermal, barrier and optical characteristics of gelatin composite films. Furthermore, this review compiles the functional properties of gelatin extracted from different sources and functional characteristics of gelatin composite films incorporated with different NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hanani ZN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Macromol 71:94–102

    Google Scholar 

  2. Soo PY, Sarbon NM (2018) Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packag Shelf Life 15:1–8

    Google Scholar 

  3. Basiak E, Lenart A, Debeaufort F (2017) Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. J Sci Food Agric 97:858–867. https://doi.org/10.1002/jsfa.7807

    Article  CAS  PubMed  Google Scholar 

  4. Hanani ZN, Roos YH, Kerry JP (2012) Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll 29:144–151

    Google Scholar 

  5. Nor M, Nazmi N, Sarbon N (2017) Effects of plasticizer concentrations on functional properties of chicken skin gelatin films. Int Food Res J 24(5):1910–1918

    CAS  Google Scholar 

  6. Li F, Ye Q, Gao Q, Chen H, Shi SQ, Zhou W, Li X, Xia C, Li J (2019) Facile fabrication of self-healable and antibacterial soy protein-based films with high mechanical strength. ACS Appl Mater Interfaces 11:16107–16116. https://doi.org/10.1021/acsami.9b03725

    Article  CAS  PubMed  Google Scholar 

  7. Nazmi N, Isa M, Sarbon N (2017) Preparation and characterization of chicken skin gelatin/cmc composite film as compared to bovine gelatin film. Food Biosci 19:149–155

    CAS  Google Scholar 

  8. Bakry N, Isa M, Sarbon N (2017) Effect of sorbitol at different concentrations on the functional properties of gelatin/carboxymethyl cellulose (CMC)/chitosan composite films. Int Food Res J 24(4):1753

    CAS  Google Scholar 

  9. Shyni K, Hema G, Ninan G, Mathew S, Joshy C, Lakshmanan P (2014) Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food Hydrocoll 39:68–76

    CAS  Google Scholar 

  10. Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocoll 43:360–376

    CAS  Google Scholar 

  11. Suderman N, Isa M, Sarbon N (2018) The effect of plasticizers on the functional properties of biodegradable gelatin-based film: a review. Food Biosci 24:111–119

    CAS  Google Scholar 

  12. Gómez-Guillén M, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20(1):3–16

    Google Scholar 

  13. Arfat YA, Ahmed J, Hiremath N, Auras R, Joseph A (2017) Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver–copper nanoparticles. Food Hydrocoll 62:191–202

    CAS  Google Scholar 

  14. Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44:161–181. https://doi.org/10.1080/1040841X.2017.1332001

    Article  CAS  PubMed  Google Scholar 

  15. Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljević V, Kucharek M, Makarewicz M, Adam V (2018) Development and characterisation of furcellaran–gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food hydrocoll 83:9–16

    Google Scholar 

  16. Jorge MFC, Alexandre EMC, Flaker CHC, Bittante AMQB, Sobral PJA (2015) Biodegradable films based on gelatin and montmorillonite produced by spreading. Int J Polym Sci 2015:806791. https://doi.org/10.1155/2015/806791

    Article  CAS  Google Scholar 

  17. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    CAS  PubMed  Google Scholar 

  18. Sahraee S, Ghanbarzadeh B, Milani JM, Hamishehkar H (2017) Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food Bioprocess Technol 10(8):1441–1453

    CAS  Google Scholar 

  19. Salaheldin HI, Negm A, Osman GE (2017) Porcine skin gelatin–silver nanocomposites: synthesis, characterisation, cell cytotoxicity, and antibacterial properties. IET Nanobiotechnol 11(8):957–964

    PubMed  Google Scholar 

  20. Shankar S, Jaiswal L, Selvakannan P, Ham K, Rhim J (2016) Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles. RSC Adv 6(71):67340–67352

    CAS  Google Scholar 

  21. Vejdan A, Ojagh SM, Abdollahi M (2017) Effect of gelatin/agar bilayer film incorporated with TiO2 nanoparticles as a UV absorbent on fish oil photooxidation. Int J Food Sci Technol 52(8):1862–1868

    CAS  Google Scholar 

  22. Shankar S, Wang LF, Rhim JW (2019) Effect of melanin nanoparticles on the mechanical, water vapor barrier, and antioxidant properties of gelatin-based films for food packaging application. Food Packag Shelf Life 21:100363

    Google Scholar 

  23. Hosseini SF, Gómez-Guillén MC (2018) A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: special emphasis on nanotechnology-based approaches. Trends Food Sci Technol 79:125–135

    CAS  Google Scholar 

  24. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182

    CAS  Google Scholar 

  25. Bertuzzi MA, Slavutsky AM (2016) Standard and new processing techniques used in the preparation of films and coatings at the lab level and scale-up. In: Garcia MP, Gomez-Guillen MC, Lopez-Caballero M, Barbosa-Canovas GV (eds) Edible films and coatings: fundamentals and applications. Taylor & Francis Group, LLC, Boca Raton, FL

    Google Scholar 

  26. O’Sullivan A, Shaw N, Murphy S, Van de Vis J, van Pelt-Heerschap H, Kerry J (2006) Extraction of collagen from fish skins and its use in the manufacture of biopolymer films. J Aquat Food Prod Technol 15(3):21–32

    Google Scholar 

  27. Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    CAS  Google Scholar 

  28. Ghebremeskel AN, Vemavarapu C, Lodaya M (2007) Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm 328(2):119–129

    CAS  PubMed  Google Scholar 

  29. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

    CAS  Google Scholar 

  30. Damodaran S, Parkin KL (2017) Amino acids, peptides, and proteins. In: Damodaran S, Parkin KL (eds) Fennema’s food chemistry, 5th edn. CRC Press, Taylor and Francis, New York

    Google Scholar 

  31. Romani VP, Machado AV, Olsen BD, Martins VG (2018) Effects of pH modification in proteins from fish (Whitemouth croaker) and their application in food packaging films. Food Hydrocoll 74:307–314

    CAS  Google Scholar 

  32. Mariod AA, Fadul H (2013) Gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12(2):135–147

    CAS  Google Scholar 

  33. Jongjareonrak A, Benjakul S, Visessanguan W, Tanaka M (2006) Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocoll 20(8):1216–1222

    CAS  Google Scholar 

  34. Thumthanaruk B, Rodsuwan U, Chancharern P, Kerdchoechuen O, Laohakunjit N, Chism GW (2017) Physico-chemical properties of extruded copolymer film. J Food Process Preserv 41(2):e12808

    Google Scholar 

  35. Aykın-Dinçer E, Koç A, Erbaş M (2017) Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poult Sci 96(11):4124–4131

    PubMed  Google Scholar 

  36. Mafazah E, Pranoto Y, Rohman A (2018) Extracting of yellowfin tuna (Thunnus albacares) fish skin gelatin as influenced by alkaline concentration and extraction times. In: IOP conference series: earth environment science, p 012047

  37. Wu J, Chen S, Ge S, Miao J, Li J, Zhang Q (2013) Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll 32(1):42–51

    Google Scholar 

  38. Aewsiri T, Benjakul S, Visessanguan W, Tanaka M (2008) Chemical compositions and functional properties of gelatin from pre-cooked tuna fin. Int J Food Sci Technol 43(4):685–693

    CAS  Google Scholar 

  39. Nazmi NNM, Sarbon NM (2018) Antioxidant, mechanical and physical properties of chicken skin gelatin/CMC film incorporated with Centella asiatica extract. https://doi.org/10.20944/preprints201805.0006.v1

  40. GMIA (2019) Gelatin handbook. Gelatin Manufacturers Institute of America. www.gelatin-gmia.com/uploads/1/1/8/4/…/gmia_gelatin_manual_2019.pdf

  41. Karim A, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 23(3):563–576

    CAS  Google Scholar 

  42. Gómez-Guillén MC, Turnay J, Fernández-Dıaz M, Ulmo N, Lizarbe MA, Montero P (2002) Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocoll 16(1):25–34

    Google Scholar 

  43. Hafidz R, Yaakob C, Amin I, Noorfaizan A (2011) Chemical and functional properties of bovine and porcine skin gelatin. Int Food Res J 18:813–817

    CAS  Google Scholar 

  44. Sobral PDA, Menegalli F, Hubinger M, Roques M (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll 15(4–6):423–432

    CAS  Google Scholar 

  45. Hoque MS, Benjakul S, Prodpran T (2010) Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. J Food Eng 96(1):66–73

    CAS  Google Scholar 

  46. Sarbon NM, Badii F, Howell NK (2013) Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll 30(1):143–151

    Google Scholar 

  47. Ledward D (1986) Gelation of gelatin. In: Mitchell JR, Ledward DA (eds) Functional properties of food macromolecules. Elsevier, London, pp 171–201

    Google Scholar 

  48. Kim JS, Park JW (2005) Partially purified collagen from refiner discharge of Pacific whiting surimi processing. J Food Sci 70(8):511–516

    Google Scholar 

  49. Al-Hassan A, Norziah M (2012) Starch–gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll 26(1):108–117

    CAS  Google Scholar 

  50. Arnesen JA, Gildberg A (2007) Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour Technol 98(1):53–57

    CAS  PubMed  Google Scholar 

  51. Carvalho R, Sobral P, Thomazine M, Habitante A, Giménez B, Gómez-Guillén M, Montero P (2008) Development of edible films based on differently processed Atlantic halibut (Hippoglossus hippoglossus) skin gelatin. Food Hydrocoll 22(6):1117–1123

    CAS  Google Scholar 

  52. Giménez B, Gómez-Estaca J, Alemán A, Gómez-Guillén M, Montero M (2009) Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocoll 23(3):585–592

    Google Scholar 

  53. Kittiphattanabawon P, Benjakul S, Sinthusamran S, Kishimura H (2016) Gelatin from clown featherback skin: extraction conditions. LWT Food Sci Technol 66:186–192

    CAS  Google Scholar 

  54. Muyonga J, Cole C, Duodu K (2004) Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem 86(3):325–332

    CAS  Google Scholar 

  55. Sinthusamran S, Benjakul S, Hemar Y, Kishimura H (2018) Characteristics and properties of gelatin from seabass (Lates calcarifer) swim bladder: impact of extraction temperatures. Waste Biomass Valoriz 9(2):315–325

    CAS  Google Scholar 

  56. Shahiri Tabarestani H, Sedaghat N, Jahanshahi M, Motamedzadegan A, Mohebbi M (2016) Physicochemical and rheological properties of White-Cheek Shark (Carcharhinus dussumieri) skin gelatin. Int J Food Prop 19(12):2788–2804

    CAS  Google Scholar 

  57. Sarabia AI, Gómez-Guillén M, Montero P (2000) The effect of added salts on the viscoelastic properties of fish skin gelatin. Food Chem 70(1):71–76

    CAS  Google Scholar 

  58. Zhou P, Mulvaney SJ, Regenstein JM (2006) Properties of Alaska pollock skin gelatin: a comparison with tilapia and pork skin gelatins. J Food Sci 71(6):313–321

    Google Scholar 

  59. De Carvalho R, Grosso C (2004) Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocoll 18(5):717–726

    Google Scholar 

  60. Kuan YH, Nafchi AM, Huda N, Ariffin F, Karim AA (2017) Comparison of physicochemical and functional properties of duck feet and bovine gelatins. J Sci Food Agric 97(5):1663–1671

    CAS  PubMed  Google Scholar 

  61. Muhammad NAN, Huda N, Karim A, Nafchi AM (2018) Effects of acid type extraction on characterization and sensory profile of duck feet gelatin: towards finding bovine gelatin alternative. J Food Meas Charact 12(1):480–486

    Google Scholar 

  62. Ward AG, Courts A (1977) Science and technology of gelatin. Academic Press, London

    Google Scholar 

  63. Karim AA, Bhat R (2008) Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends Food Sci Technol 19(12):644–656

    CAS  Google Scholar 

  64. Badii F, Howell NK (2006) Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocoll 20(5):630–640

    CAS  Google Scholar 

  65. Rosli N, Sarbon N (2015) Physicochemical and structural properties of Asian Swamp Eel (Monopterus albus) skin gelatin as compared to bovine gelatin. Int Food Res J 22(2):699

    CAS  Google Scholar 

  66. Wangtueai S, Siebenhandl-Ehn S, Haltrich D (2016) Optimization of the preparation of gelatin hydrolysates with antioxidative activity from Lizardfish (Saurida spp.) scales gelatin. Chiang Mai J Sci 43(1):1122–1133

    Google Scholar 

  67. Hoque MS, Benjakul S, Prodpran T (2011) Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll 25(1):82–90

    CAS  Google Scholar 

  68. Jamilah B, Harvinder K (2002) Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem 77(1):81–84

    CAS  Google Scholar 

  69. Yang H, Wang Y, Jiang M, Oh JH, Herring J, Zhou P (2007) 2-Step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin. J Food Sci 72(4):188–195

    Google Scholar 

  70. Sántiz-Gómez MA, Mazorra-Manzano MA, Ramírez-Guerra HE, Scheuren-Acevedo SM, Navarro-García G, Pacheco-Aguilar R, Ramírez-Suárez JC (2019) Effect of acid treatment on extraction yield and gel strength of gelatin from whiptail stingray (Dasyatis brevis) skin. Food Sci Biotechnol 28(3):751–757

    PubMed  Google Scholar 

  71. Ahmad T, Ismail A, Ahmad S, Khalil K, Leo T, Awad E, Imlan J, Sazili A (2018) Effects of ultrasound assisted extraction in conjugation with aid of actinidin on the molecular and physicochemical properties of bovine hide gelatin. Molecules 23(4):730

    PubMed Central  Google Scholar 

  72. Yahdiana H, Irwandi J, Effionora A (2018) Characterization and functional properties of gelatin extracted from goatskin. Int Food Res J 25(1):275–281

    Google Scholar 

  73. Chiou BS, Avena-Bustillos RJ, Bechtel PJ, Jafri H, Narayan R, Imam SH, Glenn GM, Orts WJ (2008) Cold water fish gelatin films: effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. Eur Polym J 44(11):3748–3753

    CAS  Google Scholar 

  74. Park JW, Whiteside WS, Cho SY (2008) Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT Food Sci Technol 41(4):692–700

    CAS  Google Scholar 

  75. Sha XM, Hu ZZ, Ye YH, Xu H, Tu ZC (2019) Effect of extraction temperature on the gelling properties and identification of porcine gelatin. Food Hydrocoll 92:163–172

    CAS  Google Scholar 

  76. Soradech S, Nunthanid J, Limmatvapirat S, Luangtana-Anan M (2012) An approach for the enhancement of the mechanical properties and film coating efficiency of shellac by the formation of composite films based on shellac and gelatin. J Food Eng 108(1):94–102

    CAS  Google Scholar 

  77. Park JH, Choe JH, Kim HW, Hwang KE, Song DH, Yeo EJ, Kim HY, Choi YS, Lee SH, Kim CJ (2013) Effects of various extraction methods on quality characteristics of duck feet gelatin. Korean J Food Sci Anim Resour 33(2):162–169

    Google Scholar 

  78. Ratanavaraporn J, Damrongsakkul S, Sanchavanakit N, Banaprasert T, Kanokpanont S (2006) Comparison of gelatin and collagen scaffolds for fibroblast cell culture. J Met Mater Miner 16(1):31–36

    CAS  Google Scholar 

  79. Abdelmalek BE, Gómez-Estaca J, Sila A, Martinez-Alvarez O, Gómez-Guillén MC, Chaabouni-Ellouz S, Ayadi MA, Bougatef A (2016) Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. LWT Food Sci Technol 65:924–931

    CAS  Google Scholar 

  80. Abdelhedi O, Nasri R, Jridi M, Kchaou H, Nasreddine B, Karbowiak T, Debeaufort F, Nasri M (2018) Composite bioactive films based on smooth-hound viscera proteins and gelatin: physicochemical characterization and antioxidant properties. Food Hydrocoll 74:176–186

    CAS  Google Scholar 

  81. Sila A, Martinez-Alvarez O, Haddar A, Gómez-Guillén MC, Nasri M, Montero MP, Bougatef A (2015) Recovery, viscoelastic and functional properties of Barbel skin gelatine: investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chem 168:478–486

    CAS  PubMed  Google Scholar 

  82. Tümerkan ETA, Cansu Ü, Boran G, Mac Regenstein J, Özoğul F (2019) Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chem 287:273–279

    Google Scholar 

  83. Souissi N, Jridi M, Nasri R, Slama RB, Njeh M, Nasri M (2016) Effects of the edible cuttlefish gelatin on textural, sensorial and physicochemical quality of octopus sausage. LWT Food Sci Technol 65:18–24

    CAS  Google Scholar 

  84. Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero M, Montero M, Gómez-Guillén M (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocoll 30(1):163–172

    Google Scholar 

  85. Haug IJ, Draget KI, Smidsrød O (2004) Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll 18(2):203–213

    CAS  Google Scholar 

  86. Avena-Bustillos R, Olsen C, Olson D, Chiou B, Yee E, Bechtel P, McHugh T (2006) Water vapor permeability of mammalian and fish gelatin films. J Food Sci 71(4):202–207

    Google Scholar 

  87. Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107

    CAS  PubMed  Google Scholar 

  88. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng 33(4):1819–1841

    CAS  Google Scholar 

  89. Martucci JF, Ruseckaite RA (2017) Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocoll 64:70–77

    CAS  Google Scholar 

  90. Echegaray M, Mondragon G, Martin L, González A, Peña-Rodriguez C, Arbelaiz A (2016) Physicochemical and mechanical properties of gelatin reinforced with nanocellulose and montmorillonite. J Renew Mater 4(3):206–214

    CAS  Google Scholar 

  91. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274

    CAS  PubMed  Google Scholar 

  92. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Preparation and characterization of chitosan nanoparticles-loaded fish gelatin-based edible films. J Food Process Eng 39(5):521–530

    CAS  Google Scholar 

  93. Kumar S, Mitra A, Halder D (2017) Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT 75:293–300

    CAS  Google Scholar 

  94. Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184

    Google Scholar 

  95. Kundu S, Das A, Basu A, Abdullah MF, Mukherjee A (2017) Guar gum benzoate nanoparticle reinforced gelatin films for enhanced thermal insulation, mechanical and antimicrobial properties. Carbohydr Polym 170:89–98

    CAS  PubMed  Google Scholar 

  96. Yi D, Siddique B, Lai J (2018) Development of Biopolymer film with different ratios of gelatine to chitosan reinforced with zinc oxide nanoparticles for food covering/preservation. In: IOP conference series: materials science engineering, p 012039

  97. Hambleton A, Fabra M-J, Debeaufort F, Dury-Brun C, Voilley A (2009) Interface and aroma barrier properties of iota-carrageenan emulsion—based films used for encapsulation of active food compounds. J Food Eng 93(1):80–88

    CAS  Google Scholar 

  98. Lotti C, Isaac CS, Branciforti MC, Alves RM, Liberman S, Bretas RE (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44(5):1346–1357

    CAS  Google Scholar 

  99. Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387

    CAS  PubMed  Google Scholar 

  100. Nassiri R, Mohammadi NA (2018) Antimicrobial and barrier properties of bovine gelatin films reinforced by nano TiO2. J Chem Health Risks 3:21–28

    Google Scholar 

  101. Dammak I, de Carvalho RA, Trindade CSF, Lourenço RV, do Amaral Sobral PJ (2017) Properties of active gelatin films incorporated with rutin-loaded nanoemulsions. Int J Biol Macromol 98:39–49

    CAS  PubMed  Google Scholar 

  102. Kim D, Jeon K, Lee Y, Seo J, Seo K, Han H, Khan S (2012) Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress Organ Coat 74(3):435–442

    CAS  Google Scholar 

  103. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2016) Physico-mechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food Bioprocess Technol 9(1):101–112

    CAS  Google Scholar 

  104. Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    CAS  Google Scholar 

  105. Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50

    CAS  PubMed  Google Scholar 

  106. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84

    CAS  PubMed  Google Scholar 

  107. Tang H, Lu A, Li L, Zhou W, Xie Z, Zhang L (2013) Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem Eng J 234:124–131

    CAS  Google Scholar 

  108. Ejaz M, Arfat YA, Mulla M, Ahmed J (2018) Zinc oxide nanorods/clove essential oil incorporated type B gelatin composite films and its applicability for shrimp packaging. Food Packag Shelf Life 15:113–121

    Google Scholar 

  109. Savadekar N, Karande V, Vigneshwaran N, Kadam P, Mhaske S (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5(3):281–290

    CAS  Google Scholar 

  110. Liu F, Antoniou J, Li Y, Ma J, Zhong F (2015) Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocoll 45:140–149

    CAS  Google Scholar 

  111. Othman SH, Salam A, Raudhah N, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy. https://doi.org/10.1155/2014/945930

    Article  Google Scholar 

  112. Chiellini E, Cinelli P, Corti A (2001) Composite films based on waste gelatin: thermal–mechanical properties and biodegradation testing. Polym Degrad Stabil 73(3):549–555

    CAS  Google Scholar 

  113. Koshkaki MR, Ghassai H, Khavandi A, Seyfoori A, Molazemhosseini A (2013) Effects of formaldehyde solution and nanoparticles on mechanical properties and biodegradation of gelatin/nano β-TCP scaffolds. Iran Polym J 22(9):653–664

    CAS  Google Scholar 

  114. Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf 8:63–70

    Google Scholar 

  115. Julia XY, Li TH (2011) Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci 1(1):19

    Google Scholar 

  116. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    CAS  PubMed Central  Google Scholar 

  117. Akbar A, Sadiq MB, Ali I, Muhammad N, Rehman Z, Khan MN, Muhammad J, Khan SA, Rehman FU, Anal AK (2019) Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal Agric Biotechnol 17:36–42

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Sadiq.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Sadiq, M.B. Importance of gelatin, nanoparticles and their interactions in the formulation of biodegradable composite films: a review. Polym. Bull. 78, 4047–4073 (2021). https://doi.org/10.1007/s00289-020-03283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03283-4

Keywords

Navigation