Skip to main content

Advertisement

Log in

Betel leaf-derived carbon nano-sphere/renewable resourced polyurethane coatings for high-performance applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Present study focuses on the development of sustainable green-sourced carbon nano-sphere (CNSp) from Betel Leaf by thermal decomposition method for high-performance Polyurethane coating. The obtained carbon black was then functionalized with acid solution. FTIR analysis confirms the presence of carboxyl group. The graphitic domain present in the nano-sphere were found using XRD and Raman spectroscopy. TEM analysis clearly shows the mono-dispersed sized nano-spheres of about ~ 40 nm. The nano-sphere was further incorporated into castor oil based Polyurethane coatings. The nanoscale incorporation of the CNSp (0.2 and 0.5%) into the PU shows good increment in the resultant mechanical and thermo-mechanical properties of the polyurethane/carbon nano-sphere hybrid in comparison to the virgin PU film. The DMTA result shows an increase in the storage modulus from 3730 to 4454 MPa. Moreover, an accretion in the tensile strength was observed from 5.55 to 9.77 MPa Overall increments of 76.03% and good surface roughness observed by SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892

    Article  CAS  Google Scholar 

  2. Chen T, Dai L (2013) Carbon nanomaterials for high-performance super capacitors. Mat Today 16:272–280

    Article  CAS  Google Scholar 

  3. Huang H, Zhang J, Zhang Y, Lian S, Liu Y (2013) Highly ordered three dimensional macroporous carbon spheres and their acid catalytic properties. Solid State Sci 24:115–119

    Article  CAS  Google Scholar 

  4. Kluppel M, Heinrich G (1995) Fractal structures in carbon black reinforced rubbers. Rubber Chem Technol 68:623–651

    Article  Google Scholar 

  5. Tian H, Wang T, Zhang F, Zhao S, Wan S, He F, Wang G (2018) Tunable porous carbon spheres for high-performance rechargeable batteries. J Mater Chem A 6:12816–12841

    Article  CAS  Google Scholar 

  6. Hu FP, Wang Z, Li Y, Li C, Zhang X, Shen PK (2008) Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. J Power Sour 177:61–66

    Article  CAS  Google Scholar 

  7. Tian WQ, Wu XY, Wang KX, Jiang YM, Wang JF, Chen JS (2013) Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Adv 3:10823–10827

    Article  CAS  Google Scholar 

  8. Zhang L, Zhang M, Wang Y, Zhang Z, Kan G, Wang C, Zhong Z, Su F (2014) Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. J Mat Chem-A 2:10161–10168

    Article  CAS  Google Scholar 

  9. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  CAS  Google Scholar 

  10. Bourlinos AB, Zboril R, Petr J, Bakandritsos A, Krysmann M, Giannelis EP (2011) Luminescent surface quaternized carbon dots. Chem Mater 24:6–8

    Article  Google Scholar 

  11. Siegal MP, Yelton WG, Overmyer DL, Provencio PP (2004) Nanoporous carbon films for gas microsensors. Langmuir 20:1194–1198

    Article  CAS  Google Scholar 

  12. Vincent D, Petit S, Chin SL (2002) Optical limiting studies in a carbon-black suspension for sub nanosecond and sub picosecond laser pulses. Appl Opt 41:2944–2946

    Article  Google Scholar 

  13. Yang YC, Tang J, Liu L, Fan SS (2009) Field emission device having a hollow shaped shielding structure, US Pat. US7635945

  14. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Comp Part A Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  15. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  CAS  Google Scholar 

  16. Gaddam RR, Kantheti S, Narayan R, Raju KVSN (2014) Graphitic nanoparticles from thermal dissociation of camphor as an effective filler in polymeric coatings. RSC Adv 4:23043–23049

    Article  CAS  Google Scholar 

  17. Height MJ, Howard JB, Tester JW, Sande JBV (2004) Flame synthesis of single-walled carbon nanotubes. Carbon 42:2295–2307

    Article  CAS  Google Scholar 

  18. Flahaut E, Laurent C, Peigney A, Catalytic CVD (2005) synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383

    Article  CAS  Google Scholar 

  19. Chen GH, Hong MH, Chong TC, Elim HI, Ma GH, Ji W (2004) Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J Appl Phys 95:1455–1459

    Article  CAS  Google Scholar 

  20. Lange H, Sioda M, Huczko A, Zhu YQ, Kroto HW, Walton DRM (2003) Nanacarbon production by are discharge in water. Carbon 41:1617–1623

    Article  CAS  Google Scholar 

  21. Awadallah AE, Aboul-Enein AA, Yonis MM, Aboul-Gheit AK (2016) Effect of structural promoters on the catalytic performance of cobalt-based catalysts during natural gas decomposition to hydrogen and carbon nanotubes. Fuller Nanotub Carb Nanostruct 24(3):181–189

    Article  CAS  Google Scholar 

  22. Nair R, Chanda S (2008) Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Ind J Pharm 70:390–393

    Article  CAS  Google Scholar 

  23. Soares RR, Carone C, Einloft S, Ligabue R, Monteiro WF (2014) Synthesis and characterization of waterborne polyurethane/ZnO composites. Polym Bull 71:829–838

    Article  CAS  Google Scholar 

  24. Goswami A, Singh AK (2004) Hyperbranched polyester having nitrogen core: synthesis and applications as metal ion extractant. React Funct Polym 61:255–263

    Article  CAS  Google Scholar 

  25. Allauddin S, Narayan R, Raju KVSN (2014) Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J Coat Technol Res 11:397–407

    Article  Google Scholar 

  26. Zoran S, Petrovic (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  Google Scholar 

  27. Vu C, Blank NE (1991) Castor oil based polyurethane for underbody coatings and the like. US Pat. US5021535 A

  28. Mutlu H, Meier MAR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 10:112

    Google Scholar 

  29. Sugai T, Yoshida H, Shimada T, Okazaki T, Shinohara H (2003) New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett 3:6

    Article  Google Scholar 

  30. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Phil Trans R Soc Lond A 362:2271–2288

    Article  CAS  Google Scholar 

  31. Mishra AK, Mishra RS, Narayan R, Raju KVSN (2010) Effect of nano ZnO on the phase mixing of polyurethane hybrid dispersions. Prog Org Coat 67:405–413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two of the authors Dhanasekaran Prakash and Dr. T. Senthilvelan would like to thank DST for providing research fellowship through Inspire Senior Research Fellowship (SRF) and SERB National Post-Doctoral Fellowship (NPDF file) (File No: PDF/2017/002894) for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Senthilvelan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartik, S., Prakash, D., Kumar, R.R. et al. Betel leaf-derived carbon nano-sphere/renewable resourced polyurethane coatings for high-performance applications. Polym. Bull. 78, 3527–3541 (2021). https://doi.org/10.1007/s00289-020-03264-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03264-7

Keywords

Navigation