Skip to main content
Log in

Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, the effect of maleic anhydride grafted polypropylene (MAPP) ratio on the thermal and dynamic mechanical properties of polypropylene/hollow glass spheres (PP/HGS) composites was investigated. Hollow glass spheres content was constant at 20 wt % and MA-g-PP was set at four different levels: 1, 5, 10 and 15 wt % in PP/HGS composites. The mechanical properties of polymer composites as a function of temperature were measured using dynamic mechanic analyzer. The oxidation induction times tests and thermal properties were carried out in thermogravimetric differential thermal analyzer in order to determine thermo-oxidative performance and thermal stability of the composites. Moreover, the x-ray diffraction (XRD), the Fourier transform infrared spectrophotometry and the scanning electron microscopy were used to analyze the structural characteristics of the polymer composites. The results demonstrated that the increased MAPP content enhanced dynamic mechanical and thermal oxidative aging properties of PP /HGS composites. The addition of MAPP did not alter the crystal structure according to XRD results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vipulanandan C, Ahossin Guezo YJ (2017) Effects of temperature and strain rate on the tensile behavior of polypropylene composites insulator coatings used in offshore deepwater pipelines. J Appl Polym Sci 134:45209. https://doi.org/10.1002/app.45209

    Article  CAS  Google Scholar 

  2. Kumar N, Mireja S, Khandelwal AB (2017) Light-weight high–strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Comp Part B Eng 109:277–285. https://doi.org/10.1016/j.compositesb.2016.10.052

    Article  CAS  Google Scholar 

  3. Altan M, Kahraman Y, Gümüş B (2017) Characterization of hollow glass sphere reinforced epoxy composites: dynamical mechanical analysis and morphology. Mater Test 59(3):239–243. https://doi.org/10.3139/120.110990

    Article  CAS  Google Scholar 

  4. Zhang L, Ma J (2010) Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam. Compos Sci Technol 70:1265–1271. https://doi.org/10.1016/j.compscitech.2010.03.016

    Article  CAS  Google Scholar 

  5. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Technol 69:260–264. https://doi.org/10.1016/j.compscitech.2008.10.014

    Article  CAS  Google Scholar 

  6. Liang JZ (2014) Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos Part B 56:431–434. https://doi.org/10.1016/j.compositesb.2013.08.072

    Article  CAS  Google Scholar 

  7. Jiao C, Wang H, Li S, Chen X (2017) Fire hazard reduction of hollowglass microspheres in thermoplastic polyurethane composites. J Hazard Mater 332:176–184. https://doi.org/10.1016/j.jhazmat.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  8. Liang JZ, Li FH (2006) Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites. Polym Testing 25:527–531. https://doi.org/10.1016/j.polymertesting.2006.02.007

    Article  CAS  Google Scholar 

  9. Çelebi H (2017) Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites. Anadolu Univ J Sci Technol A Appl Sci Eng 18:746–753

    Google Scholar 

  10. Sosiati H, Nahyudin A, Triyana K, Sudarisman (2018) Effect of alkali treatment and MAPP addition on tensile strength of sisal/polypropylene composites, ISSN:1985–3157,12,65–77

  11. Kulkarni MB, Mahanwar PA (2014) Studies on the effect of maleic anhydride-grafted polypropylene with different MFI on mechanical, thermal and morphological properties of fly ash-filled PP composites. J Thermoplast Compos Mater 27(12):1679–1700. https://doi.org/10.1177/0892705712475009

    Article  CAS  Google Scholar 

  12. Kubat J, Rigdahl M, Welander M (1990) Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analaysis. J Appl Polym Sci 39:1527–1539. https://doi.org/10.1002/app.1990.070390711

    Article  CAS  Google Scholar 

  13. Patankar SN, Kranov YA (2010) Hollow glass microsphere HDPE composites for low energy sustainability. Mater Sci Eng A 527:1361–1366. https://doi.org/10.1016/j.msea.2009.10.019

    Article  CAS  Google Scholar 

  14. Patankar SN, Das A, Kranov YA (2009) Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos Part A Appl Sci Manuf 40:897–903. https://doi.org/10.1016/j.compositesa.2009.04.016

    Article  CAS  Google Scholar 

  15. Koay SC, Husseinsyah S, Osman H (2013) Modified cocoa pod husk-filled polypropylene composites by using methacrylic acid. BioResources 8(3):3260–3275. https://doi.org/10.15376/biores.8.3.3260-3275

    Article  Google Scholar 

  16. Azimi HR, Pearson RA, Hertzberg RW (1996) Fatigue of hybrid epoxy composites: epoxies containing rubber and hollow glass spheres. Polym Eng Sci 36(18):2352–2365. https://doi.org/10.1002/pen.10633

    Article  CAS  Google Scholar 

  17. Mazidi MM, Aghjeh MKR (2015) Synergistic toughening effects of dispersed components in PP/PA6/EPDM ternary blends; quantitative analysis of the fracture toughness via the essential work of fracture (EWF) methodology. RSC Adv 5(58):47183–47198. https://doi.org/10.1039/C5RA07193C

    Article  CAS  Google Scholar 

  18. Li X, Bandyopadhyay P, Nguyen TT, Park O, Lee JH (2018) Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. J Membr Sci 547:80–92. https://doi.org/10.1016/j.memsci.2017.10.031

    Article  CAS  Google Scholar 

  19. Chen Z, Pei J, Li R (2017) Study of the preparation and dielectric property of PP/SMA/PVDF blend. Mater Appl Sci 7:389. https://doi.org/10.3390/app7040389

    Article  CAS  Google Scholar 

  20. Kim YG, Kim Y, Choi JK, Baeck S-H, Shim SE (2017) Preparation and properties of polypropylene/thermoplastic polyester elastomer blends. Polym Korea 41:514–523. https://doi.org/10.7317/pk.2017.41.3.514

    Article  CAS  Google Scholar 

  21. Risite H, Oualid H A, Mabrouk K E (2019) Effects of vinyltriethoxysilane and maleic anhydride grafted polypropylenes on the morphological, thermal, rheological, and mechanical properties of polypropylene/clay nanocomposites. Proceedings 3:6. https://doi.org/10.3390/IOCN_2018-1-05500

  22. Moja TN, Bunekar N, Mishra SB, Tsai T-Y, Hwang SS, Mishra AK (2020) Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci Rep 10:217. https://doi.org/10.1038/s41598-019-57079-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian S, Luo Y, Chen J, He H, Chen Y, Ling Z (2019) A comprehensive study on the accelerated weathering properties of polypropylene-wood composites with non-metallic materials of waste-printed circuit board powders. Materials 12(6):876. https://doi.org/10.3390/ma12060876

    Article  CAS  PubMed Central  Google Scholar 

  24. Ye D, Kong J, Gu S, Zhou Y, Huang C, Xu W, Zhang X (2018) Selective aminolysis of acetylated lignin: toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene. Int J Biol Macromol 108:775–781. https://doi.org/10.1016/j.ijbiomac.2017.10.168

    Article  CAS  PubMed  Google Scholar 

  25. López JP, Gironès J, Méndez JA, Mansouri N-EE, Llop M, Mutjé P, Vilaseca F (2012) Stone-ground wood pulp-reinforced polypropylene composites water uptake and thermal properties. BioResources 7(4):5478–5487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Yağci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yağci, Ö., Eker Gümüş, B. & Taşdemir, M. Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites. Polym. Bull. 78, 3089–3101 (2021). https://doi.org/10.1007/s00289-020-03257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03257-6

Keywords

Navigation