Skip to main content
Log in

Role of the chemical modification of titanium dioxide surface on the interaction with silver nanoparticles and the capability to enhance antimicrobial properties of poly(lactic acid) composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the antimicrobial activity of neat and silanized titanium dioxide deposited with silver nanoparticles was evaluated when it was used as filler in a poly(lactic acid) matrix. The silanization and deposition processes were evaluated by scanning transmission electron microscopy and X-ray photoelectron spectroscopy confirming the chemical modification on the titanium dioxide surface by 3-aminopropyltriethoxy silane and the formation of silver nanoparticles. According to the elemental analysis conducted by energy-dispersive X-ray spectroscopy, more silver, 7.4% higher, was deposited on the oxide when this was previously silanized and when 30% w/w of silver nitrate was used as a precursor. The antimicrobial effect was confirmed for the nanoparticles through the disk diffusion method and for the composites by drop test, against Staphylococcus aureus and Escherichia coli bacteria; the results showed that the inhibition rate increased by 14.2% and 39.1% for nanoparticles and by 57.6% and 38.8% for composites against each bacteria, respectively, when deposition was performed on silanized titanium dioxide. Also, better mechanical properties were obtained in the composites filled with silanized oxide; the best results were obtained in the PLA/sTiO2–Ag 20% system with an improvement of 45.7% in tensile stress and of 38.73% for Young’s modulus. Finally, the toxicity of the composites was evaluated by seeding peripheral blood mononuclear cells; results show evidence that composites filled with these nanoparticles are non-toxic since these do not migrate from the polymeric matrix, which helps to enhance the prolonged surface antibacterial effect and to open a broad perspective of the commercial use of these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  2. Sánchez MS, Gómez Ribelles JL, Hernández Sánchez F, Mano JF (2005) On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochim Acta 430:201–210. https://doi.org/10.1016/j.tca.2005.01.066

    Article  CAS  Google Scholar 

  3. Carrasco F, Pagès P, Gámez-Pérez J et al (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95:116–125. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.11.045

    Article  CAS  Google Scholar 

  4. Kodal M, Wis AA, Ozkoc G (2018) The mechanical, thermal and morphological properties of γ-irradiated PLA/TAIC and PLA/OvPOSS. Radiat Phys Chem 153:214–225. https://doi.org/10.1016/j.radphyschem.2018.10.018

    Article  CAS  Google Scholar 

  5. Siddiqi KS, ur Rahman A, Tajuddin A, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141. https://doi.org/10.1186/s11671-018-2532-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. Springer, Cham, pp 455–479

    Google Scholar 

  7. Robles-Martínez M, González JFC, Pérez-Vázquez FJ et al (2019) Antimycotic activity potentiation of Allium sativum extract and silver nanoparticles against Trichophyton rubrum. Chem Biodivers. https://doi.org/10.1002/cbdv.201800525

    Article  PubMed  Google Scholar 

  8. Kalayci OA, Cömert FB, Hazer B et al (2010) Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polym Bull 65:215–226. https://doi.org/10.1007/s00289-009-0196-y

    Article  CAS  Google Scholar 

  9. Li W, Zhang C, Chi H et al (2017) Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules 22:1170–1184. https://doi.org/10.3390/molecules22071170

    Article  CAS  PubMed Central  Google Scholar 

  10. Natarajan S, Bhuvaneshwari M, Lakshmi DS et al (2016) Antibacterial and antifouling activities of chitosan/TiO2/Ag NPs nanocomposite films against packaged drinking water bacterial isolates. Environ Sci Pollut Res 23:19529–19540. https://doi.org/10.1007/s11356-016-7102-6

    Article  CAS  Google Scholar 

  11. Li Y, Ma M, Chen W et al (2011) Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Mater Chem Phys 129:501–505. https://doi.org/10.1016/j.matchemphys.2011.04.055

    Article  CAS  Google Scholar 

  12. Mukhopadhyay A, Basak S, Das JK et al (2010) Ag–TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. ACS Appl Mater Interfaces 2:2540–2546. https://doi.org/10.1021/am100363d

    Article  CAS  PubMed  Google Scholar 

  13. Dhanalekshmi KI, Meena KS (2014) Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core–shell nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 128:887–890. https://doi.org/10.1016/j.saa.2014.02.063

    Article  CAS  Google Scholar 

  14. Vallejo W, Díaz-Uribe C, Navarro K et al (2016) Estudio de la actividad antimicrobiana de películas delgadas de dióxido de titanio modificado con plata. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat 40:69. https://doi.org/10.18257/raccefyn.289

    Article  Google Scholar 

  15. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65:222–228. https://doi.org/10.1016/j.porgcoat.2008.11.006

    Article  CAS  Google Scholar 

  16. Angkaew S, Limsuwan P (2012) Preparation of silver–titanium dioxide core–shell (Ag@TiO2) nanoparticles: effect of Ti–Ag mole ratio. Procedia Eng 32:649–655. https://doi.org/10.1016/j.proeng.2012.01.1322

    Article  CAS  Google Scholar 

  17. Harikishore M, Sandhyarani M, Venkateswarlu K et al (2014) Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Procedia Mater Sci 6:557–566. https://doi.org/10.1016/j.mspro.2014.07.071

    Article  CAS  Google Scholar 

  18. Alimunnisa J, Ravichandran K, Meena KS (2017) Synthesis and characterization of Ag@SiO2 core–shell nanoparticles for antibacterial and environmental applications. J Mol Liq 231:281–287. https://doi.org/10.1016/j.molliq.2017.01.103

    Article  CAS  Google Scholar 

  19. Mendoza G, Peña-Juárez MG, Perez E, Gonzalez-Calderon JA (2020) Used of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly(latic acid). J Mex Chem Soc 64:44–63. https://doi.org/10.29356/jmcs.v64i2.1126

    Article  CAS  Google Scholar 

  20. Delgado Alvarado E, Peña Juárez MG, Perez Perez C et al (2019) Improvement in the dispersion of TiO2 particles inside chitosan-methyl cellulose films by the use of silane coupling agent. J Mex Chem Soc. https://doi.org/10.29356/jmcs.v63i2.741

    Article  Google Scholar 

  21. Altan M, Yildirim H (2012) Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: effects of surface modification. J Mater Sci Technol 28:686–692. https://doi.org/10.1016/S1005-0302(12)60116-9

    Article  CAS  Google Scholar 

  22. Xing Y, Li X, Zhang L et al (2012) Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog Org Coat 73:219–224. https://doi.org/10.1016/j.porgcoat.2011.11.005

    Article  CAS  Google Scholar 

  23. Luo YB, Da Li W, Wang XL et al (2009) Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Mater 57:3182–3191. https://doi.org/10.1016/j.actamat.2009.03.022

    Article  CAS  Google Scholar 

  24. Gonzalez-Rodriguez V, Escobar-Barrios V, Peña-Juárez MG, Pérez E (2020) Effect of aliphatic chain in dicarboxylic acids on non-isothermal crystallization and mechanical behavior of titanium dioxide/iPP composites. Thermochim Acta 686:178543. https://doi.org/10.1016/j.tca.2020.178543

    Article  CAS  Google Scholar 

  25. López-Zamora L, Martínez-Martínez HN, González-Calderón JA (2018) Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Mater Chem Phys 217:285–290. https://doi.org/10.1016/j.matchemphys.2018.06.063

    Article  CAS  Google Scholar 

  26. Aragundy E, Salas V, Torres F (2011) Modificación de la Superficie del Titanio para Mejorar su Biocompatibilidad mediante la Aplicación de Técnicas de Recubrimiento con Aminas

  27. Salleh E, Muhammad II, Pahlawi QA (2014) Spectrum activity and lauric acid release behaviour of antimicrobial starch-based film. Procedia Chem 9:11–22. https://doi.org/10.1016/j.proche.2014.05.003

    Article  CAS  Google Scholar 

  28. Shameli K, Ahmad MB, Zin WM, Yunus W, Ibrahim NA, Maryam Jokar MD (2014) Synthesis and characterization of silver/polylactide nanocomposites. Mater Sci Forum 802:135–139. https://doi.org/10.4028/www.scientific.net/MSF.802.135

    Article  Google Scholar 

  29. Da Silva EC, Da Silva MGA, Meneghetti SMP et al (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res 10:201–208. https://doi.org/10.1007/s11051-008-9483-z

    Article  CAS  Google Scholar 

  30. De Silva RT, Pasbakhsh P, Lee SM, Kit AY (2015) ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 111:10–20. https://doi.org/10.1016/j.clay.2015.03.024

    Article  CAS  Google Scholar 

  31. Vallejo-Montesinos J, Gámez-Cordero J, Zarraga R et al (2020) Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polym Bull 77:107–133. https://doi.org/10.1007/s00289-019-02740-z

    Article  CAS  Google Scholar 

  32. Maye Bernal R, Miguel Guzman U (1984) Antibiograma e discos normallzaclon de la tecnica de Kirby-Bauer. Biomedica. https://doi.org/10.7705/biomedica.v4i3-4.1891

    Article  Google Scholar 

  33. Dudkiewicz A, Boxall ABA, Chaudhry Q et al (2015) Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem 176:472–479. https://doi.org/10.1016/j.foodchem.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  34. Jensen H, Soloviev A, Li Z, Søgaard EG (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci 246:239–249. https://doi.org/10.1016/j.apsusc.2004.11.015

    Article  CAS  Google Scholar 

  35. Akel S, Dillert R, Balayeva NO et al (2018) Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: effect of the co-catalyst/photocatalyst mass ratio. Catalysts 8:1–19. https://doi.org/10.3390/catal8120647

    Article  CAS  Google Scholar 

  36. Zhang Y, Fu F, Li Y et al (2018) One-step synthesis of Ag@TiO2 nanoparticles for enhanced photocatalytic performance. Nanomaterials 8:1032. https://doi.org/10.3390/nano8121032

    Article  CAS  PubMed Central  Google Scholar 

  37. Mogal SI, Gandhi VG, Mishra M et al (2014) Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind Eng Chem Res 53:5749–5758. https://doi.org/10.1021/ie404230q

    Article  CAS  Google Scholar 

  38. Koch D, Manzhos S (2017) On the charge state of titanium in titanium dioxide. J Phys Chem Lett 8:1593–1598. https://doi.org/10.1021/acs.jpclett.7b00313

    Article  CAS  PubMed  Google Scholar 

  39. Moodley S (2011) A study of the chlorination behaviour of various titania feedstocks, p 154

  40. Meroni D, Lo Presti L, Di Liberto G et al (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study. J Phys Chem C 121:430–440. https://doi.org/10.1021/acs.jpcc.6b10720

    Article  CAS  Google Scholar 

  41. Ding Q, Zhang Z, Wang C et al (2012) Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochim Acta 536:47–54. https://doi.org/10.1016/J.TCA.2012.02.023

    Article  CAS  Google Scholar 

  42. Xin B, Jing L, Ren Z et al (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809. https://doi.org/10.1021/jp0469618

    Article  CAS  PubMed  Google Scholar 

  43. Bahl MK, Tsai SC, Chung YW (1980) Auger and photoemission investigations of the platinum-SrTiO3(100) interface: relaxation and chemical-shift effects. Phys Rev B 21:1344–1348. https://doi.org/10.1103/PhysRevB.21.1344

    Article  CAS  Google Scholar 

  44. Masetti E, Bulir J, Gagliardi S et al (2004) Ellipsometric and XPS analysis of the interface between silver and SiO2, TiO2 and SiNx thin films. Thin Solid Films 455–456:468–472. https://doi.org/10.1016/j.tsf.2003.11.244

    Article  CAS  Google Scholar 

  45. Maruo YY, Yamada T, Tsuda M (2012) Reactivity of CO2 and H2O on TiO2 catalysts studied by gas phase FT-IR method and deactivation mechanism. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/379/1/012036

    Article  Google Scholar 

  46. Bonan RF, Mota MF, da Costa Farias RM et al (2019) In vitro antimicrobial and anticancer properties of TiO2 blow-spun nanofibers containing silver nanoparticles. Mater Sci Eng C 104:109876. https://doi.org/10.1016/j.msec.2019.109876

    Article  CAS  Google Scholar 

  47. Ferraris S, Spriano S, Miola M et al (2018) Surface modification of titanium surfaces through a modified oxide layer and embedded silver nanoparticles: effect of reducing/stabilizing agents on precipitation and properties of the nanoparticles. Surf Coat Technol 344:177–189. https://doi.org/10.1016/j.surfcoat.2018.03.020

    Article  CAS  Google Scholar 

  48. Hassan ME, Liu G, Omer EOM et al (2018) Silver embedded C-TiO2 exhibits improved photocatalytic properties with potential application in waste water treatment. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.12.004

    Article  Google Scholar 

  49. Gazzotti S, Rampazzo R, Hakkarainen M et al (2019) Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: an in situ approach. Compos Sci Technol 171:94–102. https://doi.org/10.1016/j.compscitech.2018.12.015

    Article  CAS  Google Scholar 

  50. Zhao SJ, Wang SQ, Ye HQ (2001) Partial reduction of Si(IV) in SiO2 thin film by deposited metal particles: an XPS study. Surf Interface Anal 32:189–192. https://doi.org/10.1002/sia.1034

    Article  Google Scholar 

  51. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antiobiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  52. Clinical and Laboratory Standards Institute (2012) Performance standards for antimicrobial disk susceptibility tests: approved standard, 11th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  53. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta Part A Mol Biomol Spectrosc 137:236–243. https://doi.org/10.1016/j.saa.2014.08.030

    Article  CAS  Google Scholar 

  54. Hajipour MJ, Fromm KM, Akbar Ashkarran A et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  55. Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652. https://doi.org/10.1016/j.foodhyd.2013.08.011

    Article  CAS  Google Scholar 

  56. Jokar M, Abdul Rahman R, Ibrahim NA et al (2012) Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol 5:719–728. https://doi.org/10.1007/s11947-010-0329-1

    Article  CAS  Google Scholar 

  57. De Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524. https://doi.org/10.1016/j.jfoodeng.2011.10.030

    Article  CAS  Google Scholar 

  58. Dias HB, Bernardi MIB, Bauab TM et al (2019) Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent Mater 35:e36–e46. https://doi.org/10.1016/j.dental.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  59. Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R (2007) Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polym Test 26:20–37. https://doi.org/10.1016/j.polymertesting.2006.07.011

    Article  CAS  Google Scholar 

  60. Pantani R, Gorrasi G, Vigliotta G et al (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005

    Article  CAS  Google Scholar 

  61. Robertson GL (2013) Food packaging : principles and practice. CRC Press, Boca Raton

    Google Scholar 

  62. Ding Q, Shi Y, Chen M et al (2016) Ultrafast dynamics of plasmon–exciton interaction of Ag nanowire-graphene hybrids for surface catalytic reactions. Sci Rep. https://doi.org/10.1038/srep32724

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao M, Gong H, Ma M et al (2019) A comparative antibacterial activity and cytocompatibility for different top layers of TiN, Ag or TiN–Ag on nanoscale TiN/Ag multilayers. Appl Surf Sci 473:334–342. https://doi.org/10.1016/j.apsusc.2018.12.159

    Article  CAS  Google Scholar 

  64. Auffan M, Rose J, Bottero JY et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. https://doi.org/10.1038/nnano.2009.242

    Article  CAS  PubMed  Google Scholar 

  65. Pérez-Maldonado IN, Herrera C, Batres LE et al (2005) DDT-induced oxidative damage in human blood mononuclear cells. Environ Res 98:177–184. https://doi.org/10.1016/j.envres.2004.11.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Carlos Benavides Muñiz for experimental assistance in the microbial experiments. M.G. Peña-Juárez and J.A. Gonzalez-Calderón wish to thank Consejo Nacional de Ciencia y Tecnología (Conacyt México) for Ph.D. scholarship (No: 744689) and for the support with the program “Cátedras-Conacyt,” respectively. R. Lopez-Esparza wishes to thank Universidad de Sonora by financial support through project USO315005347 and to Mora R. of the DIFUS by the assistance in XPS experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Robles-Martínez or J. A. Gonzalez-Calderon.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Juárez, M.G., Robles-Martínez, M., Méndez-Rodríguez, K.B. et al. Role of the chemical modification of titanium dioxide surface on the interaction with silver nanoparticles and the capability to enhance antimicrobial properties of poly(lactic acid) composites. Polym. Bull. 78, 2765–2790 (2021). https://doi.org/10.1007/s00289-020-03235-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03235-y

Keywords

Navigation