Skip to main content
Log in

Detection of damages on biaxial GFRP composite material using non-destructive technique

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This exploratory research work presents a non-destructive evaluation (NDE) method based on optical metrology and ultrasonic C-scan technique. The Optical metrology technique has a 7 MW He–Ne laser, as the source, which is used to perform NDE of biaxial glass–epoxy composite material. This methodology acquires the images of the healthy and the tested samples (tensile, compression, three point and impact). Further, it is post-processed to yield their respective contours and thereby the damaged regions are identified by their pixel intensity values represented in yellow colour code. The second technique, ultrasonic C-scan used for the present study is of immersion pulse-echo method. Using this, the damaged regions are characterized by means of variations in their amplitude signals. C-scan gives more information about the cracks in the fibre and delamination in the composite by means of whitish blue colour code. Further failure analysis is also studied, using Abaqus software, and the results obtained from the analysis are compared with optical metrology and ultrasonic C-scan results. It is found that the results obtained from all three methodologies are indistinguishable from each other. Due to the high-resolution capability aspects, the optical metrology technique may be considered as an efficient tool for the detection of damaged area. Using these techniques, various damages such as interlaminar voids, porosity, resin rich areas and resin starvation, delamination, fibre fracture and matrix cracking are identified and analysed. Therefore, NDE techniques (C-scan, optical metrology) serve as an effective and reliable tool for the assessment and evaluation of extent of damages in the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Bar-Cohen Y, Crane RL (1982) Acoustic backscattering imaging of subcritical flaws in composites. Mater Eval 40:970

    CAS  Google Scholar 

  2. Matzkanin GA (1982) Nondestructive evaluation of fibre reinforced composites. Publication NTIAC-82-1, vol 1. Southwest Research Institute

  3. Sendeckyj GP (1983) NDE techniques for composite laminates. In: AGARD conference proceeding No. 355 on characterization, analysis and significance of defects in composite materials

  4. Sturrock WR Application of ultrasonic inspections to CF-18 structures. In: Proceedings of DND composite materials workshop. Paper No. 23, DREP Special Report 83-1, vol 2

  5. Ambu R, Aymerich F, Ginesu F, Priolo P (2006) Assessment of NDT interferometric techniques for impact damage detection in composite laminates. Compos Sci Technol 66:199–205

    Article  Google Scholar 

  6. Khomenko A, Karpenko O, Koricho E, Haq M, Cloud GL, Udpa L (2016) Theory and validation of optical transmission scanning for quantitative NDE of impact damage in GFRP composites. Compos Part B 107:182–191

    Article  CAS  Google Scholar 

  7. Khomenko A, Karpenko O, Koricho EG, Haq M, Cloud GL, Udpa L (2017) Quantitative comparison of optical transmission scanning with conventional techniques for NDE of impact damage in GFRP composites. Compos Part B 123:92–104

    Article  CAS  Google Scholar 

  8. de Mendibil IO, Aretxabaleta L, Sarrionandia M et al (2016) Impact behaviour of glass fibre reinforced epoxy/aluminium fibre metal laminate manufactured by vacuum assisted resin transfer moulding. Compos Struct 140:118–124

    Article  Google Scholar 

  9. Ganesh Babu M, Velmurugan R, Gupta NK (2006) Energy absorption and ballistic limit of targets struck by heavy projectile. Lat Am J Solids Struct 3:21–39

    Google Scholar 

  10. Luo RK, Green ER, Morrison CJ (1999) Impact damage analysis of composite plates. Int J Impact Eng 22:435–447

    Article  Google Scholar 

  11. Balaganesan G, Velmurugan R, Srinivasan M et al (2014) Energy absorption and ballistic limit of nanocomposite laminates subjected to impact loading. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2014.02.017

    Article  Google Scholar 

  12. Venkatanarayanan PS, Joseph Stanley A (2012) Intermediate velocity bullet impact response of laminated glass fiber reinforced hybrid (HEP) resin carbon nano composite. Aerosp Sci Technol 21:75–83

    Article  Google Scholar 

  13. Dong J, Kim B, Locquet A, McKeon P, Declercq N, Citrin DS (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos Part B 79:667–675

    Article  CAS  Google Scholar 

  14. Harizi W, Chaki S, Bourse G, Ourak M (2015) Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. Compos Part B 70:131–137

    Article  CAS  Google Scholar 

  15. Hassen AA, Taheri H, Vaidya UK (2016) Non-destructive investigation of thermoplastic reinforced composites. Compos Part B 97:244–254

    Article  CAS  Google Scholar 

  16. Chakrapani SK, Dayal V, Barnard D (2013) Detection and characterization of waviness in unidirectional GFRP using Rayleigh wave Air Coupled Ultrasonic Testing (RAC-UT). Res Nondestruct Eval 24:191–201

    Article  Google Scholar 

  17. Cheng L, Tian GY (2012) Comparison of nondestructive testing methods on detection of delaminations in composites. J Sens. https://doi.org/10.1155/2012/408437

    Article  Google Scholar 

  18. Gaudenzi P, Bernabei M, Dati E, De Angelis G, Marrone M, Lampani L (2014) On the evaluation of impact damage on composite materials by comparing different NDI techniques. Compos Struct 118:257–266

    Article  Google Scholar 

  19. Hocheng H, Tsao CC (2007) Computerized tomography and C-scan for measuring drilling-induced delamination in composite material using twist drill and core drill. Key Eng Mater 339:16–20

    Article  Google Scholar 

  20. Hung YY (1996) Shearography for non-destructive evaluation of composite structures. Opt Lasers Eng 24:161–182

    Article  Google Scholar 

  21. Kadlec M, Růžek R (2012) A comparison of laser shearography and C-scan for assessing a glass/epoxy laminate impact damage. Appl Compos Mater 19:393–407

    Article  Google Scholar 

  22. Kersemans M, De Baere I, Degrieck J, Van Den Abeele K, Pyl L, Zastavnik F, Sol H, Van Paepegem W (2014) Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scan. Polym Test. https://doi.org/10.1016/j.polymertesting.2014.01.001

    Article  Google Scholar 

  23. Yang SH, Kim KB, Oh HG, Kang JS (2013) Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction. NDT and E Int 57:45–51

    Article  CAS  Google Scholar 

  24. Infanta Mary Priya I, Vinayagam BK (2018) Enhancement of bi-axial glass fibre reinforced polymer composite with graphene platelet nanopowder modifies epoxy resin. Adv Mech Eng. https://doi.org/10.1177/1687814018793261

    Article  Google Scholar 

  25. Zhang J, Song Y, Li X, Zhong C (2020) Comparison of experimental measurements of material grain size using ultrasound. J Nondestruct Eval 39(2):1–8

    Article  CAS  Google Scholar 

  26. Zhang H, Sfarra S, Osman A, Sarasini F, Netzelmann U, Perilli S, Ibarra-Castanedo C, Maldague XP (2018) Eddy current pulsed thermography for ballistic impact evaluation in basalt-carbon hybrid composite panels. Appl Opt 57(18):D74–D81

    Article  CAS  Google Scholar 

  27. Nelson LJ, Smith RA, Mienczakowski M (2018) Ply-orientation measurements in composites using structure-tensor analysis of volumetric ultrasonic data. Compos Part A Appl Sci Manuf 104:108–119

    Article  CAS  Google Scholar 

  28. Ambrozinski L, Mrowka J, O’Donnell M, Pelivanov I (2019) Detection and imaging of local ply angle in carbon fiber reinforced plastics using laser ultrasound and tilt filter processing. Compos Part A Appl Sci Manuf 126:105581

    Article  CAS  Google Scholar 

  29. Pagliarulo V, Papa I, Lopresto V, Langella A, Ferraro P (2019) Impact damage investigation on glass fiber-reinforced plate laminates at room and lower temperatures through ultrasound testing and electronic speckle pattern interferometry. J Mater Eng Perform 28(6):3301–3308

    Article  CAS  Google Scholar 

  30. Saeedifar M, Najafabadi MA, Zarouchas D, Toudeshky HH, Jalalvand M (2018) Barely visible impact damage assessment in laminated composites using acoustic emission. Compos Part B: Eng 152:180–192

    Article  CAS  Google Scholar 

  31. El-Sabbagh A, Steuernagel L, Ziegmann G (2013) Ultrasonic testing of natural fibre polymer composites: effect of fibre content, humidity, stress on sound speed and comparison to glass fibre polymer composites. Polym Bull 70(2):371–390

    Article  CAS  Google Scholar 

  32. Tabatabaeian A, Ghasemi AR (2020) The impact of MWCNT modification on the structural performance of polymeric composite profiles. Polym Bull. https://doi.org/10.1007/s00289-019-03088-0

    Article  Google Scholar 

  33. Parsania PH, Patel JP (2020) Fabrication and physicochemical properties of glass fabric–multifunctional epoxy resin composite. Polym Bull 77(4):1667–1679

    Article  CAS  Google Scholar 

  34. Růžek R, Lohonka R, Jironč J (2006) Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification. NDT and E Int 39(2):132–142

    Article  Google Scholar 

  35. Briotti G, Scarponi C (2001) Acoustic attenuation for ultrasonic NDI detection of delaminations on composite laminates. J Reinf Plast Compos 20(1):76–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Infanta Mary Priya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infanta Mary Priya, I., Vinayagam, B.K. Detection of damages on biaxial GFRP composite material using non-destructive technique. Polym. Bull. 78, 2569–2603 (2021). https://doi.org/10.1007/s00289-020-03228-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03228-x

Keywords

Navigation