Skip to main content
Log in

One-pot synthesis, characterization and in vitro antibacterial evaluation of bioactive “aminophosphinic acid” groups grafted onto polymeric-support

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the synthesis, characterization and in vitro antibacterial activity of two novel compounds with aminophosphinic acid groups have been investigated. Both α-propylaminophosphinic acid grafted on styrene-6.7%divinylbenzene copolymer (AmPhinicPr) and α-benzylaminophosphinic acid grafted on styrene-6.7%divinylbenzene copolymer (AmPhinicBz) were obtained by a one-pot Kabachnik–Fields polymer-analog reaction. They were characterized using FT-IR spectroscopy, EDX and TG/DTA, to establish the degree of functionalization with pendant α-aminophosphinic acid groups. They exhibited remarkable efficiency in antibacterial tests. The bioactive aminophosphinic groups have an antibacterial effect against Staphylococcus aureus (S.aureus), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Bacillus cereus (B. cereus). We have evaluated the applicability of the Weibull model to describe inactivation of microbial cells at our samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Scheme 2.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Corbridge DEC (2013) Phosphorus, chemistry, biochemistry and technology, 6th edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22

    Google Scholar 

  2. Kaboudin B, Saadati F (2009) A simple, novel and convenient method for the synthesis of 1-aminophosphinic acids: synthesis of a novel C2-symmetric phosphinic acid pseudodipeptide. Tetrahedron Lett 50:1450–1452. https://doi.org/10.1016/j.tetlet.2009.01.055

    Article  CAS  Google Scholar 

  3. Nichita I, Lupa L, Stoia M, Dragan ES, Popa A (2019) Aminophosphonic groups grafted onto the structure of macroporous styrene–divinylbenzene copolymer: preparation and studies on the antimicrobial effect. Polym Bull 76:4539–4557. https://doi.org/10.1007/s00289-018-2613-6

    Article  CAS  Google Scholar 

  4. Nichita I, Popa A, Dragan ES, Iliescu S, Ilia G (2015) Grafted α-hydroxyphosphonic acids onto polymeric supports: preparation, characterization, and antimicrobial effect. J Biomater Sci Polym Ed 26(8):483–496. https://doi.org/10.1080/09205063.2015.1030990

    Article  CAS  PubMed  Google Scholar 

  5. Kaboudin B, Jafari E (2008) One-pot synthesis of 1-aminophosphinic acids using 50% hypophosphorus acid under microwave irradiation. J Iran Chem Soc 5:S97–S102. https://doi.org/10.1007/BF03246496

    Article  CAS  Google Scholar 

  6. Zolghaadri S, Bahrami A, Khan MTH, Muzon-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34:279–309. https://doi.org/10.1080/14756366.2018.1545767

    Article  CAS  Google Scholar 

  7. Wolińska E, Hałdys K, Gora J, Olszewski TK, Boduszek B, Latajka R (2019) Phosphonic and phosphinic acid derivatives as novel tyrosinase inhibitors: kinetic studies and molecular docking. Chem Biodivers 16:e1900167. https://doi.org/10.1002/cbdv.201900167

    Article  CAS  PubMed  Google Scholar 

  8. Kubícek V, Vojtísek P, Rudovský J, Hermann P, Lukes I (2003) Complexes of divalent transition metal ions with bis(aminomethyl)phosphinic acid in aqueous solution and in the solid state. Dalton Trans 20:3927–3938. https://doi.org/10.1039/B305844A

    Article  Google Scholar 

  9. Szabo A, Jaszay ZM, Hegedus L, Tokea L, Petnehazy I (2003) The first enantioselective synthesis of α-aminophosphinates. Tetrahedron Lett 44:4603–4606. https://doi.org/10.1016/S0040-4039(03)00946-8

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L (2014) ‘One pot’ synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polym Chem 5:1857–1862. https://doi.org/10.1039/C3PY01486J

    Article  CAS  Google Scholar 

  11. Kaur T, Saha D, Singh N, Singh UP, Sharma A (2016) A Rapid One-Pot Five Component Sequential Access to Novel Imidazo[2,1-b]thiazinyl-α-aminophosphonates. Chemistry Select 3:434–439. https://doi.org/10.1002/slct.201600070

    Article  CAS  Google Scholar 

  12. Davidescu CM, Ciopec M, Negrea A, Popa A, Lupa L, Dragan ES, Ardelean R, Ilia G, Iliescu S (2013) Synthesis, characterization, and Ni(II) ion sorption properties of poly(styrene-co-divinylbenzene) functionalized with aminophosphonic acid groups. Polym Bull 70:277–291. https://doi.org/10.1007/s00289-012-0801-3

    Article  CAS  Google Scholar 

  13. Ciopec M, Davidescu CM, Negrea A, Lupa L, Popa A, Muntean C, Ardelean R, Ilia G (2013) Synthesis, characterization, and adsorption behavior of aminophosphinic grafted on poly(styrene-codivinylbenzene) for divalent metal ions in aqueous solutions. Polym Eng Sci 53(5):1117–1124. https://doi.org/10.1002/pen.23365

    Article  CAS  Google Scholar 

  14. Negrea A, Ciopec M, Negrea P, Lupa L, Popa A, Davidescu CM, Ilia G (2015) Separation of AsV from aqueous solutions using chelating polymers containing FeIII-loaded phosphorus groups. Open Chem 13:105–112. https://doi.org/10.1515/chem-2015-0025

    Article  Google Scholar 

  15. Ardelean R, Davidescu CM, Dragan ES, Popa A, Marcu C, Negrea A (2016) Adsorption of phenol or phenol derivatives onto styrene-1%(15%)divinylbenzene polymeric adsorbents functionalized with aminopropyl(benzyl)phosphonic groups. Rev Chim (Bucharest) 67(11):2180–2183

    CAS  Google Scholar 

  16. Popa A, Davidescu CM, Trif R, Ilia Gh, Iliescu S, Dehelean Gh (2003) Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React Funct Polym 55:151–158. https://doi.org/10.1016/S1381-5148(02)00224-9

    Article  CAS  Google Scholar 

  17. Xue Y, Xiao H, Zhang Y (2015) Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16:3626–3655. https://doi.org/10.3390/ijms16023626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Augusta S, Cruber HF, Streichsbier F (1994) Synthesis and antibacterial activity of immobilized quaternary ammonium salts. J Appl Polym Sci 53:1149–1163. https://doi.org/10.1002/app.1994.070530903

    Article  CAS  Google Scholar 

  19. Kawabata N, Ueno Y, Torii K, Matsumoto T (1987) Capturing interaction between insoluble pyridinium-type polymer and bacterial cells. Agric Biol Chem 51(4):1085–1090.

    CAS  Google Scholar 

  20. Kanazawa A, Ikedo T, Endo T (1994) Polymeric Phosphonium salts as a novel class of cationic biocides. VIII. Synergic effect on antibacterian activity of polymeric phosphonium and ammonium salts. J Appl Polym Sci 53:1245–1249. https://doi.org/10.1002/app.1994.070530911

    Article  CAS  Google Scholar 

  21. Bedolla-Medrano M, Hernandez-Fernandez E, Ordonez M (2014) Phenylphosphonic acid as efficient and recyclable catalyst in the synthesis of α-aminophosphonates under solvent-free conditions. Synlett 25(08):1145–1149. https://doi.org/10.1055/s-0033-1341069

    Article  CAS  Google Scholar 

  22. Galhouma AA, Elshehy EA, Tolan DA, El-Nahas AM, Taketsugu T, Nishikiori K, Akashi T, Morshedy AS, Guibal E (2019) Synthesis of polyaminophosphonic acid-functionalized poly(glycidylmethacrylate) for the efficient sorption of La(III) and Y(III). Chem Eng J 375(121932):1–16. https://doi.org/10.1016/j.cej.2019.121932

    Article  CAS  Google Scholar 

  23. Bisquera W Jr, Sumera FC (2011) Regenerable antimicrobial polyurethane coating based on N-hydroxymethylated hydantoin. Philipp J Sci 140(2):207–219 (ISSN 0031–7683)

    Google Scholar 

  24. Beveridge TJ (1999) Structure of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733

    Article  CAS  Google Scholar 

  25. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Inc J Biomed Mater Res (Appl Biomater) 43:338–348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B

    Article  CAS  Google Scholar 

  26. Cerrada ML, Munoz-Bonilla A, Fernandez-Garcia M (eds) (2014) Polymeric materials with antimicrobial activity: from synthesis to applications, vol 10. The Royal Society of Chemistry, Cambridge, pp 1–21

    Google Scholar 

  27. Ticknor O, Kolsto A, Hill K, Keim P, Laker M, Tonks M, Jackson P (2001) Fluorescent amplified fragment length polymorphism analysis of norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Appl Environ Microb 67(10):4863–4873. https://doi.org/10.1128/AEM.67.10.4863-4873.2001

    Article  CAS  Google Scholar 

  28. Severin A, Tabei K, Tomasz A (2004) The structure of the cell wall peptidoglycan of B cereus RSVF1, a strain closely related to Bacillus anthracis. Microb Drug Resist 10(2):77–82. https://doi.org/10.1089/1076629041310082

    Article  CAS  PubMed  Google Scholar 

  29. Amano K, Hazama S, Akarari Y, Ito E (1977) Isolation and characterization of structural components of Bacillus cereus AHU 1356 cell walls. Eur J Biochem 75(2):513–522. https://doi.org/10.1111/j.1432-1033.1977.tb11552.x

    Article  CAS  PubMed  Google Scholar 

  30. Giesbrecht P, Kersten T, Maidhof H, Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62(4):1371–1414

    Article  CAS  Google Scholar 

  31. Russell AD (2003) Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemother 52(5):750–763. https://doi.org/10.1093/jac/dkg422

    Article  CAS  PubMed  Google Scholar 

  32. van Boekel MAJS (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–159. https://doi.org/10.1016/s0168-1605(01)00742-5

    Article  PubMed  Google Scholar 

  33. Bevilacqua A, Speranza B, Sinigaglia M, Corbo MR (2015) A focus on the death kinetics in predictive microbiology: benefits and limits of the most important models and some tools dealing with their application in foods. Foods 4:565–580. https://doi.org/10.3390/foods4040565

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Popa.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichita, I., Lupa, L., Visa, A. et al. One-pot synthesis, characterization and in vitro antibacterial evaluation of bioactive “aminophosphinic acid” groups grafted onto polymeric-support. Polym. Bull. 78, 2505–2522 (2021). https://doi.org/10.1007/s00289-020-03219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03219-y

Keywords

Navigation