Skip to main content
Log in

Significantly enhanced dielectric properties and chain segmental dynamics of PEO/SnO2 nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide) (PEO) matrix- and tin oxide (SnO2) nanofiller-based polymer nanocomposite films were prepared by solution cast followed by melt press. The effect of SnO2 concentration (i.e. 1, 3, and 5 wt%) on the structure, dielectric permittivity, and chain segmental motion of PEO was investigated with X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dielectric relaxation spectroscopy (DRS) techniques. Results reveal that the dispersion of SnO2 nanoparticles has enormously altered the contents of different crystallite phases of the PEO and some amount of the degree of crystallinity. The DRS study in the range of 20 Hz–1 MHz at 30 °C confirmed that the complex dielectric permittivity and electrical conductivity at lower frequencies increased largely on the dispersion of SnO2 nanoparticles in the PEO matrix which was attributed to the contribution of interfacial polarization effect, moreover, a significant increase was also noted in the molecular polarization at higher frequencies. The relaxation processes corresponding to Maxwell–Wagner–Sillars mechanism and PEO chain segmental motion were analysed from the electric modulus spectra. The chain segmental dynamics and dc electrical conductivity have nonlinearly enhanced with the increase in SnO2 content in the polymer structure. The temperature-dependent dielectric and relaxation behaviour of PEO-3 wt% SnO2 film was also reported. It was observed that the relaxation time and electrical conductivity of the film exhibited Arrhenius behaviour of low activation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo JZ, Song K, Liu C (2019) Polymer-based multifunctional nanocomposites and their applications. Elsevier Inc, Amsterdam

    Google Scholar 

  2. Tan D, Irwin P (2011) Polymer based nanodielectric composites. In: Sikalidis C (ed) Advances in ceramics. INTECH, Croatia

    Google Scholar 

  3. Tanaka T, Vaughan AS (2017) Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications. Temasek Boulevard, Pan Stanford Publishing Pte Ltd., Singapore

    Google Scholar 

  4. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    CAS  PubMed  Google Scholar 

  5. Luzio A, Ferré FG, Fonzo FD, Caironi M (2014) Hybrid nanodielectrics for low-voltage organic electronics. Adv Funct Mater 24:1790–1798

    CAS  Google Scholar 

  6. Alghunaim NS, Alhusaiki-Alghamdi HM (2019) Role of ZnO nanoparticles on the structural, optical and dielectric properties of PVP/PC blend. Phys B Condens Matter 560:185–190

    CAS  Google Scholar 

  7. Morsi MA, Rajeh A, Al-Muntaser AA (2019) Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos Part B 173:106957

    CAS  Google Scholar 

  8. Anandraj J, Joshi GM (2018) Fabrication, performance and applications of integrated nanodielectric properties of materials—a review. Compos Interfaces 25:455–489

    Google Scholar 

  9. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci: Mater Electron 30:12275–12294

    CAS  Google Scholar 

  10. Choudhary S, Sengwa RJ (2018) ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr Appl Phys 18:1041–1058

    Google Scholar 

  11. Singh R, Bajpai AK, Shrivastava AK (2020) CdSe nanorod-reinforced poly(thiophene) composites in designing energy storage devices: Study of morphology and dielectric behavior. Polym Bull. https://doi.org/10.1007/s00289-020-03104-8

    Article  Google Scholar 

  12. Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC (2019) Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J Phys Chem Solids 129:378–386

    CAS  Google Scholar 

  13. Nguyen TP (2011) Polymer-based nanocomposites for organic optoelectronic devices A review. Surf Coat Technol 206:742–752

    CAS  Google Scholar 

  14. Piana F, Kredatusová J, Paruzel B, Pfleger J (2017) Polymer blends of poly(2-cyanoethyl vinyl ether) and poly(methyl methacrylate) with improved dielectric properties for flexible electronics. Express Polym Lett 11:731–737

    CAS  Google Scholar 

  15. Kandulna R, Choudhary RB (2018) Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application. Polym Bull 75:3089–3107

    CAS  Google Scholar 

  16. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Stat Sol A 205:2033–2037

    CAS  Google Scholar 

  17. Patsidis A, Psarras GC (2008) Dielectric behaviour and functionality of polymer matrix—ceramic BaTiO3 composites. Express Polym Lett 2:718–726

    CAS  Google Scholar 

  18. Abouhaswa AS, Taha TA (2019) Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-019-03059-5

    Article  Google Scholar 

  19. Sarkar PK, Bhattacharjee S, Prajapat M, Roy S (2015) Incorporation of SnO2 nanoparticles in PMMA for performance enhancement of a transparent organic resistive memory device. RSC Adv 5:105661–105667

    CAS  Google Scholar 

  20. Tsonos C, Soin N, Tomara G, Yang B, Psarras GC, Kanapitsasa A, Siores E (2016) Electromagnetic wave absorption properties of ternary poly(vinylidene fluoride)/magnetite nanocomposites with carbon nanotubes and graphene. RSC Adv 6:1919–1924

    CAS  Google Scholar 

  21. Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53:2638–2647

    CAS  Google Scholar 

  22. Bi M, Hao Y, Zhang J, Lei M, Bi K (2017) Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nanoscale 9:16386–16395

    CAS  PubMed  Google Scholar 

  23. Kar E, Bose N, Dutta B, Banerjee S, Mukherjee N, Mukherjee S (2019) 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers Manag 184:600–608

    CAS  Google Scholar 

  24. Krehula LK, Stjepanović J, Perlog M, Krehula S, Gilja V, Travas-Sejdic J, Hrnjak-Murgić Z (2019) Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym Bull 76:1697–1715

    Google Scholar 

  25. Bahuleyan BK, Induja C, Ramesan MT (2019) Influence of titanium dioxide nanoparticles on the structural, thermal, electrical properties, and gas sensing behavior of polyaniline/phenothiazine blend nanocomposites. Polym Compos 40:4416–4426

    CAS  Google Scholar 

  26. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941

    CAS  Google Scholar 

  27. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun 10:11–17

    Google Scholar 

  28. Channu VSR, Rambabu B, Kumari K, Kalluru RR, Holze R (2018) SnO2/PANI nanocomposite electrodes for supercapacitors and lithium ion batteries. Electrochim Energy Technol 4:32–38

    CAS  Google Scholar 

  29. Mao F, Shi Z, Wang J, Zhang C, Yang C, Huang M (2018) Improved dielectric permittivity and retained low loss in layer-structured films via controlling interfaces. Adv Compos Hybrid Mater 1:548–557

    Google Scholar 

  30. Mathioudakis GN, Patsidis AC, Psarras GC (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33

    CAS  Google Scholar 

  31. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insul 15:187–196

    CAS  Google Scholar 

  32. Singh PK, Goyal P, Sharma A, Rajesh KD, Gaur MS (2018) Effect of interface in dielectric relaxation properties of PEMA–BaZrO3 nanocomposites. Polym Bull 75:4003–4018

    CAS  Google Scholar 

  33. Alhabill FN, Ayoob R, Andritsch T, Vaughan AS (2018) Introducing particle interphase model for describing the electrical behaviour of nanodielectrics. Mater Design 158:62–73

    CAS  Google Scholar 

  34. Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Comps Sci Tech 70:1621–1627

    CAS  Google Scholar 

  35. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    CAS  Google Scholar 

  36. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    CAS  Google Scholar 

  37. Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54

    Google Scholar 

  38. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater 2:162–175

    CAS  Google Scholar 

  39. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26:196

    Google Scholar 

  40. Choudhary S, Sengwa RJ (2019) Investigation on structural and dielectric properties of silica nanoparticles incorporated poly(ethylene oxide)/poly(vinyl pyrrolidone) blend matrix based nanocomposites. J Inorg Organomet Polym 29:592–607

    CAS  Google Scholar 

  41. Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos Commun 5:54–63

    Google Scholar 

  42. Orlandi MO (2020) Tin oxide materials: synthesis, properties, and applications. Elsevier Inc., Amsterdam

    Google Scholar 

  43. Jian KS, Chang CJ, Wu JJ, Chang YC, Tsay CY, Chen JH, Horng TL, Lee GJ, Karuppasamy L, Anandan S, Chen CY (2019) High response CO sensor based on a polyaniline/SnO2 nanocomposite. Polymers 11:184

    PubMed Central  Google Scholar 

  44. Dhinakar KG, Selvalakshmi T, Sundar SM, Bose AC (2016) Structural, optical and impedance properties of SnO2 nanoparticles. J Mater Sci Mater Electron 27:5818–5824

    CAS  Google Scholar 

  45. Xiong HM, Zhao KK, Zhao X, Wang YW, Chen JS (2003) Elucidating the conductivity enhancement effect of nano-sized SnO2 fillers in the hybrid polymer electrolyte PEO–SnO2–LiClO4. Solid State Ionics 159:89–95

    CAS  Google Scholar 

  46. Thakur AK, Hashmi SA (2010) Polymer matrix-filler interaction mechanism for modified ion transport and glass transition temperature in the polymer electrolyte composites. Solid State Ionics 181:1270–1278

    CAS  Google Scholar 

  47. Sengwa RJ, Dhatarwal P (2020) Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 338:135890

    CAS  Google Scholar 

  48. Dhatarwal P, Sengwa RJ (2019) Polymer compositional ratio-dependent morphology, crystallinity, dielectric dispersion, structural dynamics, and electrical conductivity of PVDF/PEO blend films. Macromol Res 27:1009–1023

    CAS  Google Scholar 

  49. Utpalla P, Sharma SK, Sudarshan K, Kumar V, Pujari PK (2019) Free volume correlation with ac conductivity and thermo-mechanical properties of poly(ethylene oxide)-silica nanocomposites. Eur Polym J 117:10–18

    CAS  Google Scholar 

  50. Morsi MA, Abdelaziz M, Oraby A, Mokhles I (2019) Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J Phys Chem Solids 125:103–114

    CAS  Google Scholar 

  51. Alhusaiki-Alghamdi HM (2019) Improve spectroscopic structural and AC electrical conductivity of PC/PEO blend using grapheme. Res Phys 12:793–798

    Google Scholar 

  52. Liu Z, Wang F, Zhu H (2016) Enhanced dielectric properties of polyvinylidene fluoride with addition of SnO2 nanoparticles. Phys Status Solidi RRL 10:753–756

    CAS  Google Scholar 

  53. Telfah A, Jafar MMAG, Jum'h I, Ahmad MJA, Lambert J, Hergenröder R (2018) Identification of relaxation processes in pure polyethylene oxide (PEO) films by the dielectric permittivity and electric modulus formalisms. Polym Adv Technol 29:1974–1987

    CAS  Google Scholar 

Download references

Acknowledgements

The author (PD) appreciatively acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of Postdoctoral Fellowship (Research Associate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhatarwal, P., Choudhary, S. & Sengwa, R.J. Significantly enhanced dielectric properties and chain segmental dynamics of PEO/SnO2 nanocomposites. Polym. Bull. 78, 2357–2373 (2021). https://doi.org/10.1007/s00289-020-03215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03215-2

Keywords

Navigation