Skip to main content
Log in

Nonzero coercivity of Fe3O4/polyvinyl alcohol nanocomposites synthesized by different polymer-assisted co-precipitation processes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To investigate the effect of interaction between polyvinyl alcohol (PVA) and iron ions (Fe2+ and Fe+3) in an aqua reaction medium on the structural and magnetic properties of magnetite nanoparticles, four different co-precipitation processes have been considered. In each process, PVA interacted with one of the cations or both of them for a designated time. X-ray diffraction patterns of all the samples confirmed the cubic spinel phase and variation of the preferred orientation peak of the structures. Scanning electron microscopy images of all the nanocomposites presented almost the same morphology. Fe3O4 nanoparticles incorporated into the PVA matrix and polydispersed cluster with ultra-small particles have been made. The magnetic measurement of the samples with the average crystallite size of 12 nm was taken by a vibrating sample magnetometer. The average size of the PVA-based nanocomposites was in the superparamagnetic region, but nonzero coercivity at room temperature was observed due to the nonuniform strain in the structure calculated by Williamson–Hall methods. Besides, Fourier transform infrared spectroscopy confirmed that four different PVA-assisted co-precipitation steps caused different ion distributions over the tetrahedral and octahedral sites of the spinel structure. Such a polymer-assisted co-precipitation method is appropriate for tuning the structural and magnetic properties of other ferrite nanoparticles that are applicable in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S, Zhang G, Chen X (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8:1669–1676

    Article  CAS  Google Scholar 

  2. Arsalani S, Guidelli J, Silveira MA, Salmon CEG, Araujo JFDF, Bruno AC, Baffa O (2019) Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J Magn Magn Mater 475:458–464

    Article  CAS  Google Scholar 

  3. Arriortua OK, Insausti M, Lezama L, Gil de Muro I, Garaio E, Martínezde la Fuente J, Fratila RM, Morales MP, Costa R, Eceiza M, Sagartzazu-Aizpurua M, Aizpurua JM (2018) RGD-functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids Surf B Biointerfaces 165:315–324

    Article  CAS  Google Scholar 

  4. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  CAS  Google Scholar 

  5. Khosroshahi ME, Ghazanfari L (2012) Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J Magn Magn Mater 324:4143–4146

    Article  CAS  Google Scholar 

  6. Mirzaee S, Mahdavifarm S, Shayesteh SF (2018) Experimental and theoretical investigations of magnetic properties of Co ferrite/polyvinyl alcohol nanocomposites. J Supercond Nov Magn 31:217–223

    Article  CAS  Google Scholar 

  7. Mirzaee S, Shayesteh SF, Mahdavifar S, Hekmatara SH (2015) Synthesis, characterization and Monte Carlo simulation of CoFe2O4/polyvinylpyrrolidone nanocomposites: the coercivity investigation. J Magn Magn Mater 393:1–7

    Article  CAS  Google Scholar 

  8. Karimzadeh I, Aghazadeh M, Ganjali MR, Doroudi T, Kolivand PH (2017) Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J Magn Magn Mater 433:148–154

    Article  CAS  Google Scholar 

  9. Naseri MG, Saion EB, Ahangar HA, Shaari AH (2013) Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater Res Bull 48:1439–1446

    Article  CAS  Google Scholar 

  10. Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH (2011) Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment. J Magn Magn Mater 323:1745–1749

    Article  Google Scholar 

  11. Jafari A, Boustani K, Farjami Shayesteh S (2014) Effect of carbon shell on the structural and magnetic properties of Fe3O4 superparamagnetic nanoparticles. J Supercond Nov Magn 27:187–194

    Article  CAS  Google Scholar 

  12. Lemine OM, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M (2012) Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct 52:793–799

    Article  CAS  Google Scholar 

  13. Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater 324:1854–1861

    Article  CAS  Google Scholar 

  14. Ngadiman NHA, Noordin MY, Dris A, Shakir ASA, Kurniawan D (2015) Influence of polyvinyl alcohol molecular weight on the electrospun nanofiber mechanical properties. Procedia Manuf 2:568–572

    Article  Google Scholar 

  15. Novakova AA, Smirnov EV, Gendler TS (2006) Magnetic anisotropy in Fe3O4—PVA nanocomposites as a result of Fe3O4-nanoparticles chains formation. J Magn Magn Mater 300:354–358

    Article  Google Scholar 

  16. Novakova AA, Lanchinskaya VYu, Volkov AV, Gendler TS, Kiseleva TYu, Moskvina MA, Zezin SB (2003) Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. J Magn Magn Mater 258:354–357

    Article  Google Scholar 

  17. Reséndiz-Hernández PJ, Rodríguez-Fernández OS, García-Cerda LA (2008) Synthesis of poly(vinyl alcohol)-magnetite ferrogel obtained by freezing-thawing technique. J Magn Magn Mater 320:e373–e376

    Article  Google Scholar 

  18. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2008) Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J Control Release 126:228–236

    Article  CAS  Google Scholar 

  19. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L (2017) A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 519:19–26

    Article  CAS  Google Scholar 

  20. Hu X, Nian G, Liang X, Wu L, Yin T, Lu H, Qu S, Yang W (2019) Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces 11:10292–10300

    Article  CAS  Google Scholar 

  21. Wei W, Li A, Pi S, Wang Q, Zhou L, Yang J, Ma F, Jie Ni B (2018) Synthesis of core-shell magnetic nano-composite Fe3O4@ microbial extracellular polymeric substances for simultaneous redox sorption and recovery of silver ions as silver nanoparticles. ACS Sustain Chem Eng 6:749–756

    Article  CAS  Google Scholar 

  22. Tuo X, Li B, Yu X, Chen C, Huang Z, Cao H, Huang Y, Li L (2016) Facile synthesis of magnetic polypyrrole composite nanofibers and their application in Cr(VI) removal. Polym Compos 39:1507–1513

    Article  Google Scholar 

  23. Cullity BD, Stock SR (2001) Elements of X ray diffraction. Addison Wesley, Boston

    Google Scholar 

  24. Aleksey AN, Maxim AK, Anastasiia SG, Pavel SM, Natalya VS, Igor VSG, Alexander S, Maxim AA, Alexander GM (2019) Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J Magn Magn Mater 469:443–449

    Article  Google Scholar 

  25. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7:1–7

    Article  Google Scholar 

  26. Oh UC, Ho Je J (1993) Effects of strain energy on the preferred orientation of TiN thin films. J Appl Phys 74:1692

    Article  CAS  Google Scholar 

  27. Khorsand Zak A, Abd WH (2010) Characterization and X-ray peak broadening analysis in PZT nanoparticles prepared by modified sol–gel method. Ceram Int 36:1905–1910

    Article  CAS  Google Scholar 

  28. Maurya A, Chauhan P, Mishra SK, Srivastava RK (2011) Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J Alloys Compd 509:8433–8440

    Article  CAS  Google Scholar 

  29. Senthilkumar V, Vickraman P, Jayachandran M, Sanjeeviraja C (2010) Structural and electrical studies of nano structured Sn1−xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method. J Mater Sci: Mater Electron 21:343–348

    CAS  Google Scholar 

  30. Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99:1727

    Article  CAS  Google Scholar 

  31. Jafari A, Shayesteh SF, Salouti M, Boustani K (2015) Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles. J Magn Magn Mater 379:305–312

    Article  CAS  Google Scholar 

  32. Shokri AA, Shayesteh SF, Boustani K (2018) The role of Co ion substitution in SnFe2O4 spinel ferrite nanoparticles: study of structural, vibrational, magnetic and optical properties. Ceram Int 44:22092–22101

    Article  CAS  Google Scholar 

  33. Blundell S (2001) Magnetism in condensed matter. Oxford University Press, New York

    Google Scholar 

  34. Cornell RM, Schwertmann U (2003) The iron oxide, structure, properties, reactions, occurrences and uses. Wiley-VCH Verlag GmbH & Co, Weinheim

    Book  Google Scholar 

  35. Nedelkoski Z, Kepaptsoglou D, Lari L, Wen T, Booth RA, Oberdick SD, Galindo PL, Ramasse QM, Evans RFL, Majetich S, Lazarov VK (2017) Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Sci Rep 7:45997

    Article  CAS  Google Scholar 

  36. Linh PH, Phuc NX, Hong LV, Uyen LL, Chien NV, Nam PH, Quy NT, Nhung HTM, Phong PT, Lee IJ (2018) Dextran coated magnetite high susceptibility nanoparticles for hyperthermia application. J Magn Magn Mater 460:128–136

    Article  CAS  Google Scholar 

  37. Dara MI, Shivashankar SA (2014) Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv 4:4105–4113

    Article  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to the University of Mohaghegh Ardabili for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharareh Mirzaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, S., Azad-Kalandaragh, M. & Azizian-Kalandaragh, Y. Nonzero coercivity of Fe3O4/polyvinyl alcohol nanocomposites synthesized by different polymer-assisted co-precipitation processes. Polym. Bull. 78, 2177–2189 (2021). https://doi.org/10.1007/s00289-020-03209-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03209-0

Keywords

Navigation