Skip to main content
Log in

Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Magnetic Fe2O3 nanopowder was synthesized and characterized by various analytical techniques. The PVA/Fe2O3 nanocomposites were prepared by solution casting method to investigate the effect of nanofillers on their physicochemical properties. The analytical tools such as FTIR, UV–visible spectra and XRD were used to analyze the structure of Fe2O3 nanopowder and PVA/Fe2O3 nanocomposites. The uniform distribution of the Fe2O3 nanofillers on the PVA matrix was inspected using SEM. The particle size of the crystalline Fe2O3 nanofillers was observed to be less than 30 nm from the TEM micrographs. The optical characteristics of the prepared samples were investigated by analyzing their UV–visible spectra. The bandgap of PVA nanocomposites was lower than for pure PVA due to the dispersed Fe2O3 nanofillers in the PVA matrix. The thermal properties of pristine PVA and PVA/Fe2O3 nanocomposites were investigated by TGA. The PVA/Fe2O3 nanocomposite systems exhibited the improved thermal stability. The thermal degradation mechanism of PVA/Fe2O3 nanocomposite system was inspected in depth at five different heating rates under non-isothermal conditions. The electrical and mechanical properties of PVA were enhanced remarkably while increasing the % weight loading of nanopowder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdullah Z, Dong Y, Davies I, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Tech Eng 56:1307–1344

    Article  CAS  Google Scholar 

  2. Surkatti R, El-Naas M (2014) Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Water Process Eng 1:84–90

    Article  Google Scholar 

  3. Saini I, Sharma A, Dhiman R, Aggarwal S, Ram S, Sharma P (2017) Grafted SiC nanocrystals: for enhanced optical, electrical and mechanical properties of polyvinyl alcohol. J Alloys Compd 714:172–180

    Article  CAS  Google Scholar 

  4. Hao C, Shen Y, Wang Z (2015) Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties. ACS Sustain Chem Eng 4:1069–1077

    Article  Google Scholar 

  5. Abdullah O, Tahir D, Kadir K (2015) Optical and structural investigation of synthesized PVA/PbS nanocomposites. J Mater Sci Mater Elect 26:6939–6944

    Article  CAS  Google Scholar 

  6. Krishnamoorthy K, Natarajan S, Kim J, Kadarkaraithangam J (2011) Enhancement in thermal and tensile properties of ZrO2/Poly (Vinyl Alcohol) Nanocomposite Film. Mater Express 1:329–335

    Article  CAS  Google Scholar 

  7. Pasha S, Deshmukh K, Ahamed M, Chidambaram K, Mohanapriya M, Raj N (2015) Investigation of microstructure, morphology, mechanical, and dielectric properties of PVA/PbO nanocomposites. Adv Polym Technol 36:352–361

    Article  Google Scholar 

  8. Mallakpour S, Khadem E (2017) Poly (vinyl alcohol)/CaCO3-diacid nanocomposite: investigation of physical and wetting properties and application in heavy metal adsorption. J Appl Polym Sci 134:45414

    Article  Google Scholar 

  9. Hemalatha K, Rukmani K (2016) Synthesis, characterization and optical properties of polyvinyl alcohol–cerium oxide nanocomposite films. RSC Adv 6:74354–74366

    Article  CAS  Google Scholar 

  10. Singhal A, Kaur M, Dubey K (2012) Polyvinyl alcohol–In2O3 nanocomposite films: synthesis, characterization and gas sensing properties. RSC Adv 2:7180–7189

    Article  CAS  Google Scholar 

  11. Roy H, Mollah M, Islam M, Susan M (2018) Poly (vinyl alcohol)–MnO2 nanocomposite films as UV-shielding materials. Polym Bull 75:5629–5643

    Article  CAS  Google Scholar 

  12. Wei P, Xiaowei H, Yan C (2010) Preparation and characterization of poly (vinyl alcohol)/antimony-doped tin oxide nanocomposites. Int J Polym Mater 60:223–232

    Article  Google Scholar 

  13. Mısırlıoğlu B, Özdemir Z, Aksakal B, Salt Y, Tırnakçı B, Denktaş C (2018) Polyvinyl alcohol/EuBa2Ca2Cu3O9−x composites: dielectric and mechanical properties. J Inorg Organomet Polym Mater 28:1968–1979

    Article  Google Scholar 

  14. Muhammad F, Aziz S, Hussein S (2014) Effect of the dopant salt on the optical parameters of PVA: NaNO3 solid polymer electrolyte. J Mater Sci Mater Elect 26:521–529

    Article  Google Scholar 

  15. Badapanda T, Senthil V, Anwar S, Cavalcante L, Batista N, Longo E (2013) Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer–ceramic composite. Curr Appl Phys 13:1490–1495

    Article  Google Scholar 

  16. Shirbeeny W, Hafez M, Mahmoud W (2013) Synthesis and characterization of PVA/YBCO nanocomposite for improvement of solar energy conversion. Polym Compos 34:587–591

    Article  CAS  Google Scholar 

  17. Zhou K, Jiang S, Bao C (2012) Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703

    Article  CAS  Google Scholar 

  18. More S, Dhokne R, Moharil S (2017) Structural properties and temperature dependence dielectric properties of PVA-Al2O3O3 composite thin films. Polym Bull 75:909–923

    Article  Google Scholar 

  19. Osuntokun J, Ajibade P (2016) Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix. Physica B 496:106–112

    Article  CAS  Google Scholar 

  20. Valášková M, Tokarský J, Pavlovský J, Prostˇejovský P, Kocí K (2019) α-Fe2O3 nanoparticles/Vermiculite clay material: structural, optical and photocatalytic properties. Materials 12:1–16

    Google Scholar 

  21. Selvi J, Mahalakshmi S, Parthasarathy V (2017) Synthesis, structural, optical, electrical and thermal studies of poly (vinyl alcohol)/CdO nanocomposite films. J Inorg Organomet Polym Mater 27:1918–1926

    Article  CAS  Google Scholar 

  22. Mahalakshmi S, Parthasarathy V, Alagesan T, Anbarasan R (2019) Non-isothermal crystallization and degradation kinetic studies of synthesized Mo-TG end capped poly(ε-caprolactone). Macromol Res 27:386–395

    Article  CAS  Google Scholar 

  23. Mahalakshmi S, Parthasarathy V, Tung K, Anbarasan R, Alagesan T (2019) Non-isothermal crystallization and degradation kinetics of Fe3O4–thymolblue functionalized poly(ε-caprolactone). J Polym Environ 27:1259–1272

    Article  CAS  Google Scholar 

  24. Mahalakshmi S, Alagesan T, Parthasarathy V, Tung K, Anbarasan R (2019) Crystallization and degradation kinetics studies on Cu-TG functionalized poly(ε-caprolactone) by non-isothermal approach. J Polym Res 26(6):50

    Article  Google Scholar 

  25. Rao J, Raizada A, Ganguly D, Mankad M, Satyanarayana S, Madhu G (2015) Enhanced mechanical properties of polyvinyl alcohol composite films containing copper oxide nanoparticles as filler. Polym Bull 72:2033–2047

    Article  CAS  Google Scholar 

  26. Fu Y, Zhang H, Chen J (2001) Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett 350:491–494

    Article  CAS  Google Scholar 

  27. Rao J, Raizada A, Ganguly D, Mankad M, Satayanarayana S, Madhu G (2015) Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J Mater Sci 50:7064–7074

    Article  CAS  Google Scholar 

  28. Kocjan A, Logar M, Shen Z (2017) The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci Rep 7(1):159

    Article  Google Scholar 

  29. Peng Z, Kong L (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071

    Article  CAS  Google Scholar 

  30. Pasha S, Deshmukh K, Ahamed M, Chidambaram K, Mohanapriya M, Raj N (2015) Investigation of microstructure, morphology, mechanical, and dielectric properties of PVA/PbO nanocomposites. Adv Polym Tech 36:352–361

    Article  Google Scholar 

  31. Rajesh K, Crasta V, Rithin Kumar N, Shetty G, Rekha P (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26(4):69

    Article  Google Scholar 

  32. Galil AA, Ali HE, Balboul MR (2015) Nano-ZnO doping induced changes in structure, mechanical and optical properties of PVA films. Arab J Nucl Sci Appl 48:77–89

    Google Scholar 

  33. Mahendia S, Tomar A, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508:406–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Parthasarathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, V., Selvi, J., Senthil Kumar, P. et al. Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition. Polym. Bull. 78, 2191–2210 (2021). https://doi.org/10.1007/s00289-020-03206-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03206-3

Keywords

Navigation