Skip to main content
Log in

Natural freshwater degradation of polypropylene blends with additives of a distinct nature

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polypropylene (PP) is one of the most widely used polymers in the world, mainly due to its versatility, good properties and low cost. However, as it does not easily degrade in the natural environment, several research projects have been developed in order to increase its biodegradability. The use of pro-degrading additives has been explored, as they promote the polymer degradation process. However, few studies have evaluated the degradation of these materials in natural aqueous environments such as rivers and lakes, which contain large amounts of PP residues. Thus, the present work aims to evaluate the influence of different additives on the degradation process of PP in natural freshwater. Samples from degradation tests were evaluated for 6 months, and their structural, morphological and thermal properties (crystallinity, etc.) were monitored. From the obtained results, it was observed that the additives influenced the degradation of PP. In addition, the enzymatic additive had more promising results since it caused more significant changes in the properties analysed, especially in relation to the morphology and structural characteristics analyses (and consequently the carbonyl index), indicating a greater influence on the degradation process. Thus, the materials studied in this work are an alternative in the field of plastic packaging, reducing the effects caused by plastic waste on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acik G, Altinkok C (2019) Polypropylene micro fibers via solution electrospinning under ambient conditions. J Appl Polym Sci 48199:1–6. https://doi.org/10.1002/app.48199

    Article  CAS  Google Scholar 

  2. Macko T, Brull R, Zhu Y (2010) A review on the development of liquid chromatography systems for polyolefins. J Sep Sci 33:3446–3454. https://doi.org/10.1002/jssc.201000516

    Article  CAS  PubMed  Google Scholar 

  3. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers – a review. Pol J Environ Stud 19:255–266

    Google Scholar 

  4. De Faria AU, Martins-Franchetti SM (2010) Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do rio atibaia. Polimeros 20:141–147. https://doi.org/10.1590/S0104-14282010005000024

    Article  Google Scholar 

  5. Acik G (2020) Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly (ε-caprolactone) s. Express Polym Lett 14:272–280

    Article  CAS  Google Scholar 

  6. Orhan Y, Büyükgüngör H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeterior Biodegrad 45:49–55. https://doi.org/10.1016/S0964-8305(00)00048-2

    Article  CAS  Google Scholar 

  7. PlasticsEurope (2017) Plastics—the facts 2017. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf. Accessed 28 Feb 2019

  8. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352

    Article  CAS  PubMed  Google Scholar 

  9. Coe JM, Rogers D (2012) Marine debris: sources, impacts, and solutions. Springer, Berlin

    Google Scholar 

  10. Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C (2012) A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods 10:524–537. https://doi.org/10.4319/lom.2012.10.524

    Article  CAS  Google Scholar 

  11. Gregory, MR, Andrady AL (2003) Plastics in the marine environment. In: Plastics and the environment. Wiley, New Jersey, pp 379–402

  12. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  PubMed  Google Scholar 

  13. Pires JP, Miranda GM, de Souza GL, Fraga F, da Silva Ramos A, de Araújo GE, Ligabue RA, Azevedo CMN, Lourega RV, de Lima JEA (2019) Investigation of degradation of polypropylene in soil using an enzymatic additive. Iran Polym J (English Ed) 28:1045–1055. https://doi.org/10.1007/s13726-019-00766-8

    Article  CAS  Google Scholar 

  14. Liu X, Gao C, Sangwan P, Yu L (2014) Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci 131:9001–9015. https://doi.org/10.1002/app.40750

    Article  CAS  Google Scholar 

  15. Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Guy Samuel, Pichon G, Lacoste J, Fromageat D, Lemaire J, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stab 98:875–884. https://doi.org/10.1016/j.polymdegradstab.2013.01.002

    Article  CAS  Google Scholar 

  16. Thomas NL, Clarke J, McLauchlin AR, Patrick SG (2012) Oxo-degradable plastics: degradation, environmental impact and recycling. Proc Inst Civ Eng Waste Resour Manag 165:133–140. https://doi.org/10.1680/warm.11.00014

    Article  CAS  Google Scholar 

  17. Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers - biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383. https://doi.org/10.1016/j.polymdegradstab.2007.03.007

    Article  CAS  Google Scholar 

  18. Montagna LS, De Camargo Madalena, Forte M, Marlene R, Santana C (2013) Induced degradation of polypropylene with an organic pro-degradant additive. J Mater Sci Eng A 3:123–131

    Google Scholar 

  19. Villamizar CA, Morillas AV (2018) Degradation of conventional and oxodegradable high density polyethylene in tropical aqueous and outdoor environments. Rev Int Contam Ambient 34:137–141. https://doi.org/10.20937/RICA.2018.34.01.12

    Article  Google Scholar 

  20. Mohamad N, Zainol NS, Rahim FF, Moulod HEA, Rahim TA, Shamsuri SR, Azam MA, Yaakub MY, Abdollah MFB, Manaf MEA (2013) Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Eng 68:439–445. https://doi.org/10.1016/j.proeng.2013.12.204

    Article  CAS  Google Scholar 

  21. Veethahavya KS, Rajath BS, Noobia S, Kumar BM (2016) Biodegradation of low density polyethylene in aqueous media. Procedia Environ Sci 35:709–713. https://doi.org/10.1016/j.proenv.2016.07.072

    Article  CAS  Google Scholar 

  22. Barbeş L, Rădulescu C, Stihi C (2014) ATR-FTIR spectrometry characterisation of polymeric materials. Rom Rep Phys 66:765–777. https://doi.org/10.1109/CVPR.2013.185

    Article  Google Scholar 

  23. Miyazaki K, Arai T, Shibata K, Terano M, Nakatani H (2012) Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97:2177–2184. https://doi.org/10.1016/j.polymdegradstab.2012.08.010

    Article  CAS  Google Scholar 

  24. Tavares LB, Rocha RG, Rosa DS (2017) An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films. Iran Polym J (English Ed) 26:273–280. https://doi.org/10.1007/s13726-017-0517-1

    Article  CAS  Google Scholar 

  25. Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  26. Peixoto J, Silva LP, Krüger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324:634–644. https://doi.org/10.1016/j.jhazmat.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  27. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397. https://doi.org/10.1016/S0141-3910(02)00338-5

    Article  CAS  Google Scholar 

  28. Skariyachan S, Patil AA, Shankar A, Shankar A, Manjunath M, Bachappanavar N, Kiran S (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68. https://doi.org/10.1016/j.polymdegradstab.2018.01.018

    Article  CAS  Google Scholar 

  29. Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86. https://doi.org/10.1007/s13205-014-0205-1

    Article  PubMed  Google Scholar 

  30. Chiellini E, Corti A, Swift G (2003) Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym Degrad Stab 81:341–351. https://doi.org/10.1016/S0141-3910(03)00105-8

    Article  CAS  Google Scholar 

  31. Matsunaga M, Whitney PJ (2000) Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polym Degrad Stab 70:325–332. https://doi.org/10.1016/S0141-3910(00)00105-1

    Article  CAS  Google Scholar 

  32. Husarova L, Machovsky M, Gerych P, Houser J, Koutny M (2010) Aerobic biodegradation of calcium carbonate filled polyethylene film containing pro-oxidant additives. Polym Degrad Stab 95:1794–1799. https://doi.org/10.1016/j.polymdegradstab.2010.05.009

    Article  CAS  Google Scholar 

  33. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426. https://doi.org/10.1016/j.copbio.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  34. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91. https://doi.org/10.1016/S0964-8305(02)00177-4

    Article  CAS  Google Scholar 

  35. Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) Approaches to enhance the biodegradation of polyolefins. Open Environ Eng J 2:68–80. https://doi.org/10.2174/1874829500902010068

    Article  CAS  Google Scholar 

  36. Chawla S, Ghosh AK, Ahmad S, Avasthi DK (2006) Swift heavy ion induced structural and chemical changes in BOPP film. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 244:248–251. https://doi.org/10.1016/j.nimb.2005.11.159

    Article  CAS  Google Scholar 

  37. Cadenato A, Ramis X, Salla JM, Moracho JM, Contat-Rodrigo L, Vallés-Lluch A, Ribes-Greus A (2006) Calorimetric studies of PP/Mater-Bi blends aged in soil. J Appl Polym Sci 100:3446–3453. https://doi.org/10.1002/app.22084

    Article  CAS  Google Scholar 

  38. Longo C, Savaris M, Zeni M, Brandalise RN, Grisa AMC (2011) Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater Res 14:442–448. https://doi.org/10.1590/S1516-14392011005000080

    Article  CAS  Google Scholar 

  39. Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29. https://doi.org/10.1016/j.ibiod.2015.08.006

    Article  CAS  Google Scholar 

  40. Roy PK, Surekha P, Rajagopal C, Chatterjee V, Choudhary V (2007) Studies on the photo-oxidative degradation of LDPE films in the presence of oxidised polyethylene. Polym Degrad Stab 92:1151–1160. https://doi.org/10.1016/j.polymdegradstab.2007.01.010

    Article  CAS  Google Scholar 

  41. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng 109:513–519. https://doi.org/10.1016/j.jfoodeng.2011.10.031

    Article  CAS  Google Scholar 

  42. Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455. https://doi.org/10.1002/pen.21191

    Article  CAS  Google Scholar 

  43. Valle MLM, Guimarães MJOC (2004) Degradação de Poliolefinas Utilizando Catalisadores Zeolíticos. Polimeros 14:17–21. https://doi.org/10.1590/S0104-14282004000100009

    Article  CAS  Google Scholar 

  44. Montagna LS, Catto AL, Forte MMC, Chiellini E, Corti A, Morelli A, Santana RMC (2015) Comparative assessment of degradation in aqueous medium of polypropylene films doped with transition metal free (experimental) and transition metal containing (commercial) pro-oxidant/pro-degradant additives after exposure to controlled UV radiation. Polym Degrad Stab 120:186–192. https://doi.org/10.1016/j.polymdegradstab.2015.06.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was done with the support of Coordination of Improvement of Higher Level Personnel—Brazil (CAPES)—Finance Code 001, and Brasilata Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Vescia Lourega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, J.P., Ramos, A.S., Miranda, G.M. et al. Natural freshwater degradation of polypropylene blends with additives of a distinct nature. Polym. Bull. 78, 2025–2042 (2021). https://doi.org/10.1007/s00289-020-03200-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03200-9

Keywords

Navigation