Skip to main content
Log in

Photoinduced nanocomposites based on soluble precursor of CdS nanoparticles in polymethyl methacrylate matrix obtained by bulk radical polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We study the bulk radical polymerization of methyl methacrylate (MMA) in the presence of bis(1,1,5,5-tetraethyl-2,4-dithiobiureto)cadmium(II) [Cd(N(SCNEt2)2)2] (TEDBCd) used as the precursor of CdS nanoparticles. This compound is readily soluble both in MMA monomer and in polymethyl methacrylate (PMMA). The bulk samples based on PMMA containing up to 7% of this cadmium compound are visually transparent and colorless. We study thermal and optical properties of the obtained composites. UV irradiation of bulk composites based on the PMMA matrix with TEDBCd results in the formation of luminescent pattern containing CdS nanoparticles, which is proved by TEM and HRTEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parameswaranpillai J, Hameed N, Kurian T, Yu Y (2017) Nanocomposite materials: synthesis, properties and applications. CRC Press, Boca Raton

    Google Scholar 

  2. Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ (2019) Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 119(3):1666–1762. https://doi.org/10.1021/acs.chemrev.8b00401

    Article  CAS  PubMed  Google Scholar 

  3. Koo JH, Kim DC, Shim HJ, Kim T-H, Kim D-H (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28(35):1801834. https://doi.org/10.1002/adfm.201801834

    Article  CAS  Google Scholar 

  4. He Z, Xiao K, Durant W, Hensley DK, Anthony JE, Hong K, Kilbey SM, Chen J, Li D (2011) Enhanced performance consistency in nanoparticle/TIPS pentacene-based organic thin film transistors. Adv Funct Mater 21(19):3617–3623. https://doi.org/10.1002/adfm.201002656

    Article  CAS  Google Scholar 

  5. Wang S, Kang Y, Wang L, Zhang H, Wang Y, Wang Y (2013) Organic/inorganic hybrid sensors: a review. Sens Actuators B 182:467–481. https://doi.org/10.1016/j.snb.2013.03.042

    Article  CAS  Google Scholar 

  6. Bityurin NM (2014) Laser nanostructuring of polymers. In: Veiko VP, Konov VI (eds) Fundamentals of laser-assisted micro- and nanotechnologies. Springer International Publishing, Switzerland, pp 293–313. https://doi.org/10.1007/978-3-319-05987-7_13

    Chapter  Google Scholar 

  7. Malik MA, Afzaal M, O’Brien P (2010) Precursor chemistry for main group elements in semiconducting materials. Chem Rev 110(7):4417–4446. https://doi.org/10.1021/cm504765z

    Article  CAS  PubMed  Google Scholar 

  8. Bityurin N, Alexandrov A, Afanasiev A, Agareva N, Pikulin A, Sapogova N, Soustov L, Salomatina E, Gorshkova E, Tsverova N, Smirnova L (2013) Photoinduced nanocomposites-creation, modification, linear and nonlinear optical properties. Appl Phys A Mater Sci Proc 112(1):135–138. https://doi.org/10.1007/s00339-012-7213-y

    Article  CAS  Google Scholar 

  9. Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang YD, Marder SR, Perry JW (2002) Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 14(3):194–198. https://doi.org/10.1002/1521-4095(20020205)14:3%3c194:AID-ADMA194%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  10. Bansal AK, Sajjad MT, Antolini F, Stroea L, Gecys P, Raciukaitis G, Andre P, Hirzer A, Schmidt V, Ortolani L, Toffanin S, Allard S, Scherf U, Samuel IDW (2015) In situ formation and photo patterning of emissive quantum dots in small organic molecules. Nanoscale 7(25):11163–11172. https://doi.org/10.1039/C5NR01401H

    Article  CAS  PubMed  Google Scholar 

  11. Camposeo A, Polo M, Neves AAR, Fragouli D, Persano L, Molle S, Laera AM, Piscopiello E, Resta V, Athanassiou A, Cingolani R, Tapfer L, Pisignano D (2012) Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. J Mater Chem 22(19):9787–9793. https://doi.org/10.1039/C2JM16625A

    Article  CAS  Google Scholar 

  12. Resta V, Laera AM, Camposeo A, Piscopiello E, Persano L, Pisignano D, Tapfer L (2012) Spatially confined CdS NCs in situ synthesis through laser irradiation of suitable unimolecular precursor-doped polymer. J Phys Chem C 116(47):25119–25125. https://doi.org/10.1021/jp3090759

    Article  CAS  Google Scholar 

  13. Alexandrov A, Smirnova L, Yakimovich N, Sapogova N, Soustov L, Kirsanov A, Bityurin N (2005) UV-initiated growth of gold nanoparticles in PMMA matrix. Appl Surf Sci 248(1–4):181–184. https://doi.org/10.1016/j.apsusc.2005.03.002

    Article  CAS  Google Scholar 

  14. Yakimovich NO, Sapogova NV, Smirnova LA, Aleksandrov AP, Gracheva TA, Kirsanov AV, Bityurin NM (2008) Gold-containing nanocomposition materials on the basis of homo- and copolymers of methylmethacrylate. Russ J Phys Chem 2(1):128–134. https://doi.org/10.1134/S1990793108010193

    Article  Google Scholar 

  15. Yakimovich NO, Smirnova LA, Gracheva TA, Klychkov KS, Bityurin NM, Aleksandrov AP (2008) Synthesis of chitosan-stabilized Au nanoparticles with controllable sizes. Polym Sci B 50(9–10):238–242. https://doi.org/10.1134/S1560090408090030

    Article  Google Scholar 

  16. Perez-Nava A, Mota-Morales JD, Garcia-Carvajal ZY, Herrera-Rodriguez SE, Arrevillaga-Boni G, Azanza-Ricardo CL, Vazquez-Lepe MO, Gonzalez-Campos JB (2018) Eco-friendly production of metallic nanoparticles in polymeric solutions and their processing into biocompatible composites. Fibers Polym 19(1):156–169. https://doi.org/10.1007/s12221-018-7670-1

    Article  CAS  Google Scholar 

  17. Mescola A, Canale C, Fragouli D, Athanassiou A (2017) Controlled formation of gold nanostructures on biopolymer films upon electromagnetic radiation. Nanotechnology 28(41):415601. https://doi.org/10.1088/1361-6528/aa8337

    Article  CAS  PubMed  Google Scholar 

  18. Mehrabanian M, Morselli D, Caputo G, Scarpellini A, Palazon F, Athanassiou A, Fragouli D (2016) Laser-induced in situ synthesis of Pd and Pt nanoparticles on polymer films. Appl Phys A Math Sci Proc 122(12):1075. https://doi.org/10.1007/s00339-016-0606-6

    Article  CAS  Google Scholar 

  19. Melinte V, Chibac A, Buruiana T, Hitruc G, Buruiana EC (2015) Triazene UV-triggered photogeneration of silver/gold nanoparticles in block copolymer templates. J Nanopart Res 17(10):422. https://doi.org/10.1007/s11051-015-3227-7

    Article  CAS  Google Scholar 

  20. Mehrabanian M, Fragouli D, Morselli D, Scarpellini A, Anyfantis GC, Athanassiou A (2015) Laser-induced localized formation of silver nanoparticles on chitosan films: study on particles size and density variation. Mater Res Express 2(10):105014. https://doi.org/10.1088/2053-1591/2/10/105014

    Article  CAS  Google Scholar 

  21. Anyfantis GC, Scotto M, Scarpellini A, Pignatelli F, Toussi SM, Ruffilli R, Martiradonna L, Athanassiou A (2015) Synergistic action of alginate chemical reduction and laser irradiation for the formation of Au nanoparticles with controlled dimensions. Part Part Syst Char 32(3):389–397. https://doi.org/10.1002/ppsc.201400172

    Article  CAS  Google Scholar 

  22. Onwudiwe DC, Krueger TPJ, Oluwatobi OS, Strydom CA (2014) Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system. Appl Surf Sci 290:18–26. https://doi.org/10.1016/j.apsusc.2013.10.165

    Article  CAS  Google Scholar 

  23. Brennan JG, Siegrist T, Carroll PJ, Stuczynski SM, Reynders P, Brus LE, Steigerwald ML (1990) Bulk and nanostructure group II–VI compounds from molecular organometallic precursors. Chem Mater 2(4):403–409. https://doi.org/10.1021/cm00010a017

    Article  CAS  Google Scholar 

  24. Antolini F, Di Luccio T, Laera AM, Mirenghi L, Piscopello E, Re M, Tapfler L (2007) Direct synthesis of II–VI compound nanocrystals in polymer matrix. Phys Stat Sol B 244(8):2768–2781. https://doi.org/10.1002/pssb.200675608

    Article  CAS  Google Scholar 

  25. Antolini F, Burresi E, Stroea L, Morandi V, Ortolani L, Accorsi G, Blosi M (2012) Time and temperature dependence of CdS nanoparticles grown in a polystyrene matrix. J Nanomater. https://doi.org/10.1155/2012/815696

    Article  Google Scholar 

  26. Scalbi S, Fantin V, Antolini F (2017) Environmental assessment of new technologies: production of a quantum dots-light emitting diode. J Clean Prod 142(4):3702–3718. https://doi.org/10.1016/j.jclepro.2016.10.098

    Article  CAS  Google Scholar 

  27. Antolini F, Lanzi M, Raciukaitis G (2017) Fluorecence microscopy study of CdS quantum dots obtained by laser irradiation from a single source precursor in polymeric film. Mater Today Proc 4:S19–S26. https://doi.org/10.1016/j.matpr.2017.05.006

    Article  CAS  Google Scholar 

  28. Antolini F, Ghezelbash A, Eposito C, Trave E, Tapfer L, Korgel BA (2006) Laser-induced nanocomposite formation for printed nanoelectronics. Mater Lett 60:1095–1098. https://doi.org/10.1016/j.matlet.2005.10.093

    Article  CAS  Google Scholar 

  29. Athanassiou A, Cingolani R, Tsiranidou E, Fotakis C, Laera AM, Piscopiello E, Tapfer L (2007) Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices. Appl Phys Lett 91(15):153108. https://doi.org/10.1063/1.2790484

    Article  CAS  Google Scholar 

  30. Fragouli D, Laera AM, Caputo G, Resta V, Pompa PP, Tapfer L, Cingolani R, Athanassiou A (2010) The effect of polymer matrices in the in-situ CdS formation under UV irradiation of precursor-polymer films. J Nanosci Nanotechnol 10:1267–1272. https://doi.org/10.1166/jnn.2010.1861

    Article  CAS  PubMed  Google Scholar 

  31. Fragouli D, Resta V, Pompa PP, Laera AM, Caputo G, Tapfer L, Cingolani R, Athanassiou A (2009) Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation. Nanotechnology 20:155302. https://doi.org/10.1088/0957-4484/20/15/155302

    Article  CAS  PubMed  Google Scholar 

  32. Bansal AK, Antolini F, Sajjad MT, Stroea L, Mazzaro R, Ramkumar SG, Kass K-J, Allard S, Scherf U, Samuel IDW (2014) Photophysical and structural characterisation of in situ formed quantum dots. Phys Chem Chem Phys 16(20):9556–9564. https://doi.org/10.1039/C4CP00727A

    Article  CAS  PubMed  Google Scholar 

  33. Khanna PK, Singh N (2007) Light emitting CdS quantum dots in PMMA: synthesis and optical studies. J Lumin 127(2):474–482. https://doi.org/10.1016/j.jlumin.2007.02.037

    Article  CAS  Google Scholar 

  34. Agareva N, Smirnov AA, Afanasiev A, Sologubov S, Markin A, Salomatina E, Smirnova L, Bityurin N (2015) Properties of cadmium-(bis)dodecylthiolate and polymeric composites based on it. Materials 8(12):8691–8700. https://doi.org/10.3390/ma8125487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smirnov AA, Afanasiev A, Ermolaev N, Bityurin N (2016) LED induced green luminescence in visually transparent PMMA films with CdS precursor. Opt Mater Express 6(1):290–295. https://doi.org/10.1364/OME.6.000290

    Article  CAS  Google Scholar 

  36. Smirnov AA, Afanasiev A, Gusev S, Tatarskiy D, Ermolaev N, Bityurin N (2018) Exposure dependence of the UV initiated optical absorption increase in polymer films with a soluble CdS precursor and its relation to the photoinduced nanoparticle growth. Opt Mater Express 8(6):1603–1612. https://doi.org/10.1364/OME.8.001603

    Article  CAS  Google Scholar 

  37. Antolini F, Orazi L (2019) Quantum dots synthesis through direct laser patterning: a review. Front Chem 7:252. https://doi.org/10.3389/fchem.2019.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramasamy K, Malik MA, Helliwell M, Raftery J, O'Brien P (2011) Thio- and dithio- biuret precursors for zinc sulfide, cadmium sulfide, and zinc cadmium sulfide thin films. Chem Mater 23(6):1471–1481. https://doi.org/10.1021/cm1030393

    Article  CAS  Google Scholar 

  39. Bityurin N, Ermolaev N, Smirnov AA, Afanasiev A, Agareva N, Koryukina T, Bredikhin V, Kamensky V, Pikulin A, Sapogova N (2016) Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Appl Phys A Mater Sci Proc 122(3):193. https://doi.org/10.1007/s00339-016-9706-6

    Article  CAS  Google Scholar 

  40. Yanagihara N, Uchida K, Wakabayashi M, Uetake Y, Hara T (1999) Effect of radical initiators on the size and formation of silver nanoclusters in poly(methyl methacrylate). Langmuir 15(9):3038–3041. https://doi.org/10.1021/la9815401

    Article  CAS  Google Scholar 

  41. Nakao Y, Kaeriyama K, Yamauchi A (1991) Method for production of colored macromolecular polymer. US Patent 4,981,886

  42. Yang J, Hasell T, Wang W, Howdle SM (2008) A novel synthetic route to metal-polymer nanocomposites by in situ suspension and bulk polymerizations. Eur Polym J 44(5):1331–1336. https://doi.org/10.1016/j.eurpolymj.2008.01.044

    Article  CAS  Google Scholar 

  43. Smith DC, Bains MED (1956) The detection and estimation of residual monomer in polymethyl methacrylate. J Dent Res 35:16–24. https://doi.org/10.1177/00220345560350010901

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSF) under project No. 14-19-01702. The authors thank Dr. N. Ermolaev and Mr. I. Lukitchyov for precursor synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bityurin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agareva, N., Smirnov, A.A., Salomatina, E. et al. Photoinduced nanocomposites based on soluble precursor of CdS nanoparticles in polymethyl methacrylate matrix obtained by bulk radical polymerization. Polym. Bull. 78, 1941–1953 (2021). https://doi.org/10.1007/s00289-020-03193-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03193-5

Keywords

Navigation