Skip to main content

Advertisement

Log in

Structural, thermal and optical characteristics of laser-exposed Pd/PVA nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposite of polyvinyl alcohol (PVA) and nanosize palladium (Pd) were fabricated by ex situ casting technique. The fabricated Pd/PVA nanocomposite film has been exposed to infrared pulsated laser with fluences in the range 2–20 J/cm2. The effect of the laser radiation on the structural, thermal and optical properties of Pd/PVA has been investigated using XRD, TGA and UV–Vis spectroscopy. Exposure of IR laser radiation raises the refractive index from 1.84 to 3.38 at 700 nm which confirms the predominance of crosslinking process in the Pd/PVA nanocomposite. Furthermore, the reduction in the optical energy gap from 1.87 to 1.72 eV could be attributed to the increase in the structural disorder resulting from the coordination reaction between OH of PVA and Pd nanoparticles. The attained results reveal that the IR laser radiation enhances the dispersion of Pd nanoparticles in the PVA matrix resulting in more compact structure of Pd/PVA nanocomposite. Consequently, the onset temperature of decomposition increased upon laser irradiation. Commission Internationale de E’Claire (CIE units x, y and z) methodology was employed to describe the color of the studied samples. The color difference between the exposed nanocomposite films and the non-exposed one was raised from 5.63 to 12.01 as the laser fluence increases up to 20 J/cm2. Thus, the present study suggests that the IR laser radiation affects the microstructure of the Pd/PVA nanocomposite which in turn assists in tailoring the thermal and optical properties of such nanocomposite for usage in optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acik G (2020) Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polym Lett 14:272–280

    Article  CAS  Google Scholar 

  2. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO (2019) Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polym Degrad Stab 165:43–48

    Article  CAS  Google Scholar 

  3. Uysal N, Acik G, Tasdelen MA (2017) Soybean oil based thermoset networks via photoinduced CuAAC click chemistry. Polym Int 6:999–1004

    Article  CAS  Google Scholar 

  4. Acik G (2020) Bio-based poly(ɛ-caprolactone) from soybean-oil derived polyol via ring-opening polymerization. J Polym Environ 28:668–675

    Article  CAS  Google Scholar 

  5. Acik G, Yildiran S, Kok G, Salman Y, Tasdelen M, Tasdelen MA (2017) Synthesis and characterization of sugar-based methacrylates and their random copolymers by ATRP. Express Polym Lett 11:799–808

    Article  CAS  Google Scholar 

  6. Kamal K, Nitendra G, Singh P, Meera R (2012) Synthesis and photoluminescence of CdSe/PVA nanocomposites. J Phys Conf Ser 365:012014-3

    Google Scholar 

  7. Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. In: Mittal V (ed) Synthesis techniques for polymer nanocomposites, 1st edn. Wiley, Weinheim, p 1

    Google Scholar 

  8. Mittal V (2010). In: Mittal V (ed) Optimization of polymer nanocomposite properties. Wiley, Weinheim, pp 1–19

  9. Abedi S, Abdouss M (2014) A review of clay-supported Ziegler–Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization. Appl Catal Gen 475:386–409

    Article  CAS  Google Scholar 

  10. Teresa JB, Amy AC, Stephen RL (2012) CdSe/ZnS quantum dot intermittency in N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)- 4,4′-diamine (TPD). Chem Phys Lett 521:7–11

    Article  CAS  Google Scholar 

  11. Khanna PK, More P, Bharate BG, Vishwanath AK, Lumin J (2010) Studies on light emitting CdSe quantum dots in commercial polymethylmethacrylate. J Lumin 130:18–23

    Article  CAS  Google Scholar 

  12. Chowdhury SR, Roy PS, Bhattacharya SK (2017) Green synthesis and characterization of polyvinyl alcohol stabilized palladium nanoparticles: effect of solvent on diameter and catalytic activity. Adv Nat Sci Nanosci Nanotechnol 8:1-025002 (1–10)

    Google Scholar 

  13. Ray S, Easteal AJ, Cooney RP, Edmonds NR (2009) Structure and properties of melt-processed PVDF/PMMA/polyaniline blends. Mater Chem Phys 113:829–838

    Article  CAS  Google Scholar 

  14. Nouh SA, Abou Elfadl A, Benthami K, Alhazime AA (2019) Structural and optical characteristics of laser irradiated CdSe/PVA Nanocomposites. Int Polym Proc 34:255–261

    Article  CAS  Google Scholar 

  15. Ding L, Li T, Zhong Y, Chao F, Huang J (2014) Synthesis and characterization of a novel nitric oxide fluorescent probe CdS/PMMA nanocomposite via in-situ bulk polymerization. Mater Sci Eng C 35:29–35

    Article  CAS  Google Scholar 

  16. Chetna T, Ambika S (2016) Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite. Int Conf Condensed Matter Appl Phys AIP Conf Proc 1728:020151-4

    Google Scholar 

  17. Hanafy TA, Nouh SA, Yasein MN, El Sayed AM (2012) Influence of laser irradiation on the optical and the mechanical properties of Makrofol-DE polycarbonate. J Appl Polym Sci 124:4620–4627

    Article  CAS  Google Scholar 

  18. Blackman BRK, Steininger H, Williams JG, Zuo K (2016) The fatigue behaviour of ZnO nano-particle modified thermoplastics. Compos Sci Technol 122:10–17

    Article  CAS  Google Scholar 

  19. Son DR, Raghu AV, Reddy KR, Jeong HM (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci B Phys 55:1099–1110

    Article  CAS  Google Scholar 

  20. Nouh SA, Alsobhi BO, Abou Elfadl A, Massoud AM (2017) Effect of gamma irradiation on the structure, optical and thermal properties of PC–PBT/NiO polymer nanocomposites films. J Inorg Organomet Polym 27:1851–1860

    Article  CAS  Google Scholar 

  21. Nouh SA, Abou Elfadl A, Alsobhi BO, Massoud AM (2019) Optical, structure and thermal investigation of the effect of gamma radiation in CPVC/Ag and CPVC/Pd nanocomposites membrane. Radiat Eff Defects Solids 174:111–124

    Article  CAS  Google Scholar 

  22. Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  23. Hanifehpour Y, Hamnabard N, Mirtamizdoust B, Joo SW (2016) Sonochemical synthesis, characterization and sonocatalytic performance of terbium-doped CdS nanoparticles. J Inorg Organomet Polym 26:623–631

    Article  CAS  Google Scholar 

  24. Ibrahim HA, Abo Badr K, Mahdy T (2014) Preparation and application of a novel nanocomposites membrane for extracting the primary metabolite of cannabis in urine. Curr Sci Int 3:390–402

    Google Scholar 

  25. Arora S, Kapoor P, Singla ML (2010) Catalytic studies of palladium nanoparticles immobilized on alumina synthesized by a simple physical precipitation method. React Kinet Mech Catal 99:157–165

    CAS  Google Scholar 

  26. Nouh SA, Amal M, Bahareth RA, Abutalib MM, Benthami K (2014) Color changes in X-ray irradiated PM-355 and Makrofol DE 7-2 nuclear track detectors. Eur Phys J Appl Phys 65:1–5

    Article  CAS  Google Scholar 

  27. Somyia ES, Tarob AB, Abou Elfadl A, Arafa H (2015) Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films. Phys B 464:17–27

    Article  CAS  Google Scholar 

  28. Abdel-Salam MH, Nouh SA, Radwan YE, Fouad SS (2011) Structure and mechanical investigation of the effect of proton irradiation in Makrofol DE 7-2 polycarbonate. Mater Chem Phys 127:305–309

    Article  CAS  Google Scholar 

  29. Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7:846–855

    Article  CAS  Google Scholar 

  30. Hemshankar SR, Yousuf MA, Islam MM, Susan MABH (2018) Poly(vinyl alcohol)–MnO2 nanocomposite films as UV-shielding materials. Polym Bull 75:5629–5643

    Article  CAS  Google Scholar 

  31. Nouh SA, Benthami K, Barakat ME (2019) Effect of IR laser radiation on the structure and optical properties of PC-PBT/Pd polymer nanocomposite films. Radiat Eff Defects Solids 174:676–686

    Article  CAS  Google Scholar 

  32. Bayerl T, Brzeski M, Tafalla MM, Schledjewski R, Mitschang P (2013) Thermal degradation analysis of short-time heated polymers. J Thermoplast Compos Mater 28:390–414

    Article  CAS  Google Scholar 

  33. Horowitz H, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35:1464–1468

    Article  CAS  Google Scholar 

  34. Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071

    Article  CAS  Google Scholar 

  35. Sreekumar PA, Al-Harthi MA, Gondal MA, De SK (2013) Heterogeneity of laser-irradiated films of polyvinyl alcohol/starch blends: effect of glycerol content. Surf Interface Anal 45:1047–1051

    Article  CAS  Google Scholar 

  36. Rathore BS, Gaur MS, Singh KS (2012) Investigation of optical and thermally stimulated properties of SiO2 nanoparticles-filled polycarbonate. J Appl Polym Sci 126:960–968

    Article  CAS  Google Scholar 

  37. Rakhshani AE (2000) Study of Urbach tail, bandgap energy and grain-boundary characteristics in CdS by modulated photocurrent spectroscopy. J Phys Condens Matter 12:4391–4400

    Article  CAS  Google Scholar 

  38. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    Article  CAS  Google Scholar 

  39. Tauc J (1972). In: Abeles A (ed) In the optical properties of solid. North Holland, Amsterdam, p 277

  40. Wen R, Wang L, Wang X, Yue G-H, Chen Y, Peng D-L (2010) Influence of substrate temperature on mechanical, optical and electrical properties of ZnO: Al films. J Alloys Compd 508:370–374

    Article  CAS  Google Scholar 

  41. Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci 26:5303–5309

    CAS  Google Scholar 

  42. Rozra J, Saini I, Sharma A, Chandak N, Aggarwal S, Dhiman R, Sharma PK (2012) Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater Chem Phys 134:1121–1126

    Article  CAS  Google Scholar 

  43. Elashmaw IS, Menazea AA (2019) Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J Mater Res Technol 8:1944–1951

    Article  CAS  Google Scholar 

  44. Migahed M, Zidan HM (2006) Influence of UV-irradiation on the structure and optical properties of polycarbonate films. Curr Appl Phys 6:91–96

    Article  Google Scholar 

  45. Shams-Eldin MA, Wochnowski C, Koerdt M, Metev S, Hamza AA, Juptner W (2005) Characterization of the optical-functional properties of a waveguide written by an UV-laser into a planar polymer chip. Opt Mater 27:1138–1148

    Article  Google Scholar 

  46. Ranby B, Rebek J (1996). In: Rabek JF (ed) photodegradation, photooxidation and photostabilization of polymers: principles and applications. Wiley, London, p 153

  47. Nassau K (1998) Color for science 1998 art and technology. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nouh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouh, S.A., Benthami, K., Abou Elfadl, A. et al. Structural, thermal and optical characteristics of laser-exposed Pd/PVA nanocomposite. Polym. Bull. 78, 1851–1866 (2021). https://doi.org/10.1007/s00289-020-03188-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03188-2

Keywords

Navigation