Skip to main content
Log in

PHBHX–HA–OXG bone graft: in-vitro characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Regeneration of damaged bone tissue by using degradable scaffold is the aim of bone tissue engineering. Herein, to enhance mechanical properties and osteointegration, we produced poly hydroxybutyrate-co-hexanoate (PHBHX) scaffolds containing hydroxyapatite and oxidized xanthan gum (OXG). Morphological and physicochemical properties of the scaffolds were determined. The effects of scaffolds on bone cells were investigated. When the results were evaluated, incorporation of OXG enhanced mechanical properties and swelling rate of the scaffolds. The scaffolds did not trigger of cytochrome-c release of Saos-2 cells and TNF-α expression of THP-1 cells. It was seen that incorporation of OXG to PHBHX scaffolds increased Saos-2 cell proliferation. As a result, the scaffolds were found to have clinical application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barabaschi GDG, Manoharan V, Li Q, Bertassoni LE (2015) Engineering Pre-vascularized Scaffolds for bone regeneration. In: Bertassoni LE, Coelho PG (eds) Engineering mineralized and load bearing tissues. Springer, Cham, pp 79–94

    Chapter  Google Scholar 

  2. Gómez S, Vlad MD, López J, Fernández E (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350. https://doi.org/10.1016/j.actbio.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  3. Bandyopadhyay-Ghosh S (2008) Bone as a collagen-hydroxyapatite composite and its repair. Trends Biomater Artif Organ 22:116–124

    Google Scholar 

  4. Di Silvio L, Dalby MJ, Bonfield W (2002) Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 23:101–107

    Article  Google Scholar 

  5. Wahab IF, Razak SIA (2016) Polysaccharides as composite biomaterials. In: Composites from Renewable and Sustainable Materials, Chap 4, pp 65–85

  6. Ahmad N, Al-Subaie AM, Ahmad R et al (2019) Brain-targeted glycyrrhizic-acid-loaded surface decorated nanoparticles for treatment of cerebral ischaemia and its toxicity assessment. Artif Cells Nanomed Biotechnol 47:475–490

    Article  CAS  Google Scholar 

  7. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099. https://doi.org/10.1016/j.carbpol.2012.10.062

    Article  CAS  PubMed  Google Scholar 

  8. Izawa H, Nishino S, Maeda H et al (2014) Mineralization of hydroxyapatite upon a unique xanthan gum hydrogel by an alternate soaking process. Carbohydr Polym 102:846–851

    Article  CAS  Google Scholar 

  9. Bueno VB, Bentini R, Catalani LH et al (2014) Synthesis and characterization of xanthan–hydroxyapatite nanocomposites for cellular uptake. Mater Sci Eng C 37:195–203

    Article  CAS  Google Scholar 

  10. Kumar A, Rao KM, Kwon SE et al (2017) Xanthan gum/bioactive silica glass hybrid scaffolds reinforced with cellulose nanocrystals: Morphological, mechanical and in vitro cytocompatibility study. Mater Lett 193:274–278

    Article  CAS  Google Scholar 

  11. Biernacki M, Marzec M, Roick T et al (2017) Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microb Cell Fact 16(1):144

    Article  Google Scholar 

  12. Biernacki M, Marzec M, Roick T et al (2017) Enhancement of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microb Cell Fact 16:144

    Article  Google Scholar 

  13. Chen G, Zhang G, Park S, Lee S (2001) Industrial scale production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Article  CAS  Google Scholar 

  14. Wang Y, Bian Y-Z, Wu Q, Chen G-Q (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868

    Article  CAS  Google Scholar 

  15. Wei X, Hu Y, Xie W et al (2009) Influence of poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 90:894–905

    Google Scholar 

  16. Zhao S, Zhu M, Zhang J et al (2014) Three dimensionally printed mesoporous bioactive glass and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B 2:6106–6118

    Article  CAS  Google Scholar 

  17. Freier T, Kunze C, Nischan C et al (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly (3-hydroxybutyrate). Biomaterials 23:2649–2657

    Article  CAS  Google Scholar 

  18. Qu X-H, Wu Q, Zhang K-Y, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548. https://doi.org/10.1016/j.biomaterials.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  19. Guo J, Ge L, Li X et al (2014) Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll 39:243–250

    Article  CAS  Google Scholar 

  20. Pankongadisak P, Jaikaew N, Kiti K et al (2019) The potential use of gentamicin sulfate-loaded poly (l-lactic acid)-sericin hybrid scaffolds for bone tissue engineering. Polym Bull 76:2867–2885

    Article  CAS  Google Scholar 

  21. Wang Y-W, Wu Q, Chen J, Chen G-Q (2005) Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials 26:899–904

    Article  CAS  Google Scholar 

  22. Demirbilek M (2015) Effect of tributyl citrate on chitosan scaffold: chemical, physical properties, pro/anti inflammation cytokines. J Porous Mater 22:395–402

    Article  CAS  Google Scholar 

  23. Paiva D, Gonçalves C, Vale I et al (2016) Oxidized Xanthan Gum and Chitosan as natural adhesives for cork. Polymers (Basel) 8(7):259–272. https://doi.org/10.3390/polym8070259

    Article  CAS  Google Scholar 

  24. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146

    Article  CAS  Google Scholar 

  25. Purohit SD, Bhaskar R, Singh H et al (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 133:592–602

    Article  CAS  Google Scholar 

  26. Delattre C, Pierre G, Gardarin C et al (2015) Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydr Polym 116:34–41

    Article  CAS  Google Scholar 

  27. Hazirah MN, Isa MIN, Sarbon NM (2016) Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packag Shelf Life 9:55–63

    Article  Google Scholar 

  28. Li X, Feng Q (2005) Porous poly-L-lactic acid scaffold reinforced by chitin fibers. Polym Bull 54:47–55

    Article  CAS  Google Scholar 

  29. Srinivasan S, Jayasree R, Chennazhi KP et al (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87:274–283

    Article  CAS  Google Scholar 

  30. Jeon H, Lee H, Kim G (2014) A surface-modified poly(ɛ-caprolactone) scaffold comprising variable nanosized surface-roughness using a plasma treatment. Tissue Eng Part C Methods 20:951–963. https://doi.org/10.1089/ten.TEC.2013.0701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maji K, Dasgupta S (2017) Effect of βtricalcium phosphate nanoparticles additions on the properties of gelatin–chitosan scaffolds. Bioceram Dev Appl 7:2–13

    Google Scholar 

  32. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Increasing hydroxyapatite incorporation into poly (methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23:569–576

    Article  CAS  Google Scholar 

  33. Rentsch C, Rentsch B, Breier A et al (2010) Evaluation of the osteogenic potential and vascularization of 3D poly (3) hydroxybutyrate scaffolds subcutaneously implanted in nude rats. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 92:185–195

    Google Scholar 

  34. Shi M, Zhai D, Zhao L et al (2014) Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering. Biomed Res Int 2014:323046. https://doi.org/10.1155/2014/323046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahmad N, Ahmad I, Umar S et al (2016) PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv 23:2095–2114

    Article  CAS  Google Scholar 

  36. Kim JJ, Lee SB, Park JK, Yoo YD (2010) TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell Death Differ 17:1420–1434

    Article  CAS  Google Scholar 

  37. McCarthy ET, Sharma R, Sharma M et al (1998) TNF-alpha increases albumin permeability of isolated rat glomeruli through the generation of superoxide. J Am Soc Nephrol 9:433–438

    CAS  PubMed  Google Scholar 

  38. Brenner DA, Buck M, Feitelberg SP, Chojkier M (1990) Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia. J Clin Investig 85:248–255

    Article  CAS  Google Scholar 

  39. Cardona MA, Simmons RL, Kaplan SS (1992) TNF and IL-1 generation by human monocytes in response to biomaterials. J Biomed Mater Res 26:851–859

    Article  CAS  Google Scholar 

  40. Ding T, Sun J, Zhang P (2007) Immune evaluation of biomaterials in TNF-α and IL-1β at mRNA level. J Mater Sci Mater Med 18:2233–2236. https://doi.org/10.1007/s10856-007-3014-9

    Article  CAS  PubMed  Google Scholar 

  41. Donaldson AR, Tanase CE, Awuah D, et al (2018) Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells. Front Bioeng Biotechnol 6

  42. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    Article  CAS  Google Scholar 

  43. Hüttemann M, Pecina P, Rainbolt M et al (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 11:369–381

    Article  Google Scholar 

  44. Méndez J, Morales Cruz M, Delgado Y et al (2014) Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm 11:102–111. https://doi.org/10.1021/mp400400j

    Article  CAS  PubMed  Google Scholar 

  45. Moseley R, Leaver M, Walker M et al (2002) Comparison of the antioxidant properties of HYAFF®-11p75, AQUACEL® and hyaluronan towards reactive oxygen species in vitro. Biomaterials 23:2255–2264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted at Hacettepe University Advanced Technologies Application and Research Center (HUNITEK) and not supported by any institution. There is no conflict between the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Kağan Arslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, A.K., Alkan, F. PHBHX–HA–OXG bone graft: in-vitro characterization. Polym. Bull. 78, 1835–1849 (2021). https://doi.org/10.1007/s00289-020-03187-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03187-3

Keywords

Navigation