Skip to main content
Log in

Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in electrochemical device

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biopolymers have gained enormous awareness in recent years as a result of white pollution, which could conquer the shortcomings of toxic synthetic polymers. The present investigation is being focused on synthesizing and characterizing natural solid polymer electrolytes comprising of tamarind seed polysaccharide as host polymer and lithium triflate (LiCF3SO3) salt as ionic dopant via cost-effective solution-casting technique. X-ray diffraction analysis validates the increase in the concentration of ionic salt enhancing the amorphous nature of the polymer electrolyte which in turn may increase the ionic conductivity of the polymer electrolyte. Vibrational analysis by Fourier transform infrared spectroscopy confirms the complexation and interaction between TSP host biopolymer and LiCF3SO3 salt. Thermal characterization by differential scanning calorimetry indicates the change in glass transition temperature (Tg) of the polymer electrolyte due to the incorporation of LiCF3SO3 salt. Polymer electrolyte composition of 1 g TSP: 0.45 g LiCF3SO3 possesses the optimum ionic conductivity value of the order of 10−4 S cm−1 observed by AC impedance spectroscopy analysis. Electrochemical properties of the optimum conducting biopolymer electrolyte have been characterized via linear sweep voltammetry technique, and the results reveal that the electrochemical stability window of the prepared biopolymer electrolyte is appreciable. Optimum ionic conducting polymer membrane (1 g TSP: 0.45 g LiCF3SO3) has been employed to fabricate lithium ion conducting battery, and its cell parameters have been measured and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D 41:1–18

    Article  CAS  Google Scholar 

  2. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  CAS  Google Scholar 

  3. Liew CW, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA PVC LiTFSI polymer electrolytes based on AC impedance, dielectric behavior and HATR FTIR characteristics. J Mater Res 27:2996–3004

    Article  CAS  Google Scholar 

  4. Zhang HP, Zhang P, Li ZH, Sun M, Wu YP, Wu HQ (2007) A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem Commun 9(7):1700–1703

    Article  CAS  Google Scholar 

  5. Rajendran S, Uma T (2000) Lithium ion conduction in PVC-LiBF4 electrolytes gelled with PMMA. J Power Sources 88:282–285

    Article  CAS  Google Scholar 

  6. Shamsudin IA, Ahmad A, Hassan NH, Kaddami H (2015) Biopolymer electrolytes based on carboxymethyl O–carrageenan and imidazolium ionic liquid. Ionics 22(6):841–851

    Article  CAS  Google Scholar 

  7. Mahalakshmi M, Selvanayagam S, Selvasekarapandian S, Moniha V, Manjuladevi R, Sangeetha P (2019) Characterization of biopolymer electrolytes based on cellulose acetate with magnesium perchlorate (Mg(ClO4)2) for energy storage devices. J Sci Adv Mat dev 4:276–284

    Google Scholar 

  8. Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) 1-Allyl-3- methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484

    Article  CAS  Google Scholar 

  9. Shukur MF, Ibrahim FM, Majid NA, Ithnin R, Kadir MFZ (2013) Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9

    Article  CAS  Google Scholar 

  10. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped ammonium fluoride. J Phys Chem B 120(44):11567–11573

    Article  CAS  PubMed  Google Scholar 

  11. Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitson blend polymer electrolytes. Ionics 22(9):1647–1658

    Article  CAS  Google Scholar 

  12. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2019) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull. https://doi.org/10.1007/s00289-019-02822-y

    Article  Google Scholar 

  13. Perumal P, Christopher Selvin P, Selvasekarapandian S, Sivaraj P, Abhilash KP, Moniha V, Manjula Devi R (2018) Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. J Polym Degrad Stab 159:43–53

    Article  CAS  Google Scholar 

  14. Kumar CS, Bhattacharya S (2008) Tamarind seed: properties, processing and utilization. Crit Rev Food Sci Nutr 48:1–20

    Article  CAS  PubMed  Google Scholar 

  15. Sharma M, Mondal D, Mukesh C, Prasad K (2014) Preparation of tamarind gum based soft ion gels having thixotropic properties. Carbohydr Polym 102:467–471

    Article  CAS  PubMed  Google Scholar 

  16. Khanna M, Diwivedi AK, Singh S (1997) Polyose from seed of Tamarindus indica of property and immense pharmaceutical use. Trends Carbohydr Chem 4:79–81

    Google Scholar 

  17. Gupta V, Puri R, Gupta S, Jain S, Rao GK (2010) Tamarind Kernel gum: an upcoming natural polysaccharide. Sys Rev Pharm 1:50–54

    Article  CAS  Google Scholar 

  18. Hema M, Tamilselvi P, Hirankumar G (2017) Influences of LiCF3SO3 and TiO2 nanofiller on ionic conductivity and mechanical properties of PVA:PVdF blend polymer electrolyte. Ionics 23(10):2707–2714

    Article  CAS  Google Scholar 

  19. Ramesh S, Yi LJ (2009) FTIR spectra of plasticized high molecular weight PVC– LiCF3SO3 electrolytes. Ionics 15:413–420

    Article  CAS  Google Scholar 

  20. Sudaryanto Yulianti E, Jodi H (2015) Studies of dielectric properties and conductivity of chitosan-lithium triflate electrolyte. Polym Plast Technol 54:290–295

    Article  CAS  Google Scholar 

  21. Ahmad A, Isa KBM, Osman Z (2011) Conductivity and structural studies of plasticized Polyacrylonitrile (PAN)—lithium triflate polymer electrolyte films. Sains Malays 40(7):691–694

    CAS  Google Scholar 

  22. Kingslin Mary Genova F, Selvasekarapandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion-conducting polymer electrolytes based on PVAPAN doped with lithium triflate. Ionics 23:2727–2734

    Article  CAS  Google Scholar 

  23. Pawlicka A, Danczuk M, Wieczorek W, Monikowska EZ (2008) Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J Phys Chem A 112:8888–8895

    Article  CAS  PubMed  Google Scholar 

  24. Aziz SB, Abidin ZHZ (2014) Role of hard-acid/hard-base interaction on structural and dielectric behavior of solid polymer electrolytes based on chitosan-XCF3SO3 (X = Li+, Na+, Ag+). J Polym 906780:1–9

    Google Scholar 

  25. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi-crystalline poly (vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  26. Kumar A, Sharma R, Suresh M, Das MK, Kar KK (2016) Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-cohexafluoropropylene)-based polymer electrolytes: effect of lithium salt concentration. J Elastom Plast 49(6):513–526

    Article  CAS  Google Scholar 

  27. Chawananorasest K, Saengtongdee P, Kaemchantuek P (2016) Extraction and characterization of Tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources. Molecules 21(775):1–9

    Google Scholar 

  28. Ramesh S, Chai MF (2007) Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mat Sci Eng B 139:240–245

    Article  CAS  Google Scholar 

  29. Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Selvalakshmi S, Vinoth Pandi D (2017) Tamarind seed polysaccharide (TSP)-based Li-ion conducting membranes. Ionics 23:2677–2684

    Article  CAS  Google Scholar 

  30. Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S (2017) Incorporation of NH4Br in Tamarind Seed Polysaccharide biopolymer and its potential use in electrochemical energy storage devices. Org Electron 50:418–425

    Article  CAS  Google Scholar 

  31. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, Latha MP (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706

    Article  CAS  Google Scholar 

  32. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Vijaya N, Araichimani A, Sanjeeviraja C (2014) Preparation and characterization of PVA complexed with amino acid, proline. Ionics 21:387–399

    Article  CAS  Google Scholar 

  33. Kim JH, Min BR, Won J, Kang YS (2003) Analysis of the glass transition behavior of polymer—salt complexes: an extended configurational entropy model. J Phys Chem B 107:5901–5905

    Article  CAS  Google Scholar 

  34. Huh PH, Choi MG, Jo NJ, Lee JK, Lee JO, Yang W (2004) Effect of salt concentration on the glass transition temperature and ionic conductivity of poly (ethylene glycol) polyurethane/LiClO4 complexes. Macromol Res 12:422–426

    Article  CAS  Google Scholar 

  35. Prabakaran P, Manimuthu RP, Gurusamy S, Sebasthiyan E (2017) Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries. Chin J Polym Sci 35:407–421

    Article  CAS  Google Scholar 

  36. Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittancs data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  37. Ramesh S, Shanti R, Morris Ezra (2013) Employment of [Amim] Cl in the effort to upgrade the properties of cellulose acetate based polymer electrolytes. Cellulose 20:1377–1389

    Article  CAS  Google Scholar 

  38. Rudhziah S, Ahmad A, Ahmad I, Mohamed NS (2015) Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solarcell. Electrochim Acta 175:162–168

    Article  CAS  Google Scholar 

  39. Kim C, Lee G, Liou K, Ryu KS, Kang S-G, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257

    Article  CAS  Google Scholar 

  40. Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  41. Tan W, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Phys B Condens Matter 404(21):4308–4311

    Article  CAS  Google Scholar 

  42. Agrawal RC, Hashmi SA, Pandey GP (2007) Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane. Ionics 13:295–298

    Article  CAS  Google Scholar 

  43. Kumar LS, Christopher P, Selvasekarapandian S, Manjuladevi S, Monisha S, Perumal P (2018) Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery. Ionics 24:3793–3803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath Kumar, L., Christopher Selvin, P. & Selvasekarapandian, S. Impact of lithium triflate (LiCF3SO3) salt on tamarind seed polysaccharide-based natural solid polymer electrolyte for application in electrochemical device. Polym. Bull. 78, 1797–1819 (2021). https://doi.org/10.1007/s00289-020-03185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03185-5

Keywords

Navigation