Skip to main content
Log in

Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Several modified celluloses have shown profound benefits in several areas of application. However, there is a lack of little information on the safety profile of most modified celluloses such as cellulose ester. In response to this, cellulose (WMC) was isolated from the watermelon exocarp (WM) of the unexploited watermelon fruit. WMC was converted to cellulose ester (WMS) by simple modification with sebacic acid. WM, WMC and WMS were characterized using X-ray diffraction (XRD), particle size distribution (PSD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TG) analysis, zeta potential and scanning electron microscopy (SEM). The diffractogram revealed that WMS might be classified as cellulose I with a crystallinity of 78.21%. Its surface appears homogeneous, lumpish, having white gel appearance with agglomerates. The impact of WMS on hepato-renal functional indices and hepatic oxidative stress parameters was examined in male Wistar rats for 14 days. At the end of the 14-day exposure, WMS reduced malondialdehyde and nitric oxide concentrations, while glutathione peroxidase activity was significantly elevated, especially at the dose of 200 mg/kg. Also, microscopic analysis of the hepato-renal organs revealed histological abnormalities. Quantum chemical parameters using the density functional theory (DFT) approach were applied to gain theoretical insight into the renotoxic effect exhibited by WMS in molecular terms. The lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) are distributed over the molecules of WMS, suggesting that its renotoxic effect may have occurred via donor–acceptor interactions. Taken together, our data suggest an increase in the susceptibility of kidney to toxicity after subacute exposure to WMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heinze T, Liebert T (2012) In: Matyjaszewski K, Möller M (eds) polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 83–152

    Chapter  Google Scholar 

  2. Jedvert K, Heinze T (2017) Cellulose modification and shaping—a review. J Polym Eng 37:845–860. https://doi.org/10.1515/polyeng-2016-0272

    Article  CAS  Google Scholar 

  3. Akter F, Rifat SM, Rahman SMM, Muslim T, Rahman MA (2015) Isolation of cellulosic material from drumstick pulp and outer shell of watermelon and preparation of their acetate and carboxymethyl derivatives. Int J Adv Pharm Biol Chem 4:218–222

    CAS  Google Scholar 

  4. Einfeldt L, Günther W, Klemm D, Heublein B (2005) Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose 12:15–24. https://doi.org/10.1023/B:CELL.0000049355.93592.44

    Article  CAS  Google Scholar 

  5. Ma T, Zhao QQ, Ji KH, Zeng B, Li GQ (2014) Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose. Cellulose 21:2637–2646. https://doi.org/10.1007/s10570-014-0316-1

    Article  CAS  Google Scholar 

  6. Hossain I, Mostofa S, Muslima U, Akter F, Tania SA, Saha A, Debnath S, Muslim T, Rahman MA (2015) Isolation of cellulosic material from Agro-wastes and their derivatization. Dhaka Univ J Sci 63:43–46. https://doi.org/10.3329/dujs.v63il.21767

    Article  Google Scholar 

  7. Candido RG, Godoy GG, Goncalves AR (2017) Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr Polym 167:280–289. https://doi.org/10.1016/j.carbpol.2017.03.057

    Article  CAS  PubMed  Google Scholar 

  8. Wu C, Zhang X, Wang X, Gao Q, Li X (2019) Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites. Cellulose 26:3167–3181. https://doi.org/10.1007/s10570-019-02292-5

    Article  CAS  Google Scholar 

  9. Cichosz S, Masek A, Wolski K, Zaborsk M (2019) Universal approach of cellulose fibres chemical modification result analysis via commonly used techniques. Polym Bull 76:2147–2162. https://doi.org/10.1007/s00289-018-2487-7

    Article  CAS  Google Scholar 

  10. Reis DT, Ribeiro HIS, Pereira DH (2019) DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd2+, Cu2+ and Cr3+) potentially toxic. Polym Bull 2019:1–14. https://doi.org/10.1007/s00289-019-02926-5

    Article  CAS  Google Scholar 

  11. Hamdaoui LE, Moussaouiti ME, Gmouh S (2015) Preparation and characterization of cellulose p-phenylbenzoate by two-step synthesis from microcrystalline and kraft cellulose. Polym Bull 72:3031–3042. https://doi.org/10.1007/s00289-015-1451-z

    Article  CAS  Google Scholar 

  12. Yin X, Yu C, Zhang X, Yang J, Lin Q, Wang J, Zhu Q (2011) Comparison of succinylation methods for bacterial cellulose and adsorption capacities of bacterial cellulose derivatives for Cu2+ ion. Polym Bull 67:401–412. https://doi.org/10.1007/s00289-010-0388-5

    Article  CAS  Google Scholar 

  13. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408. https://doi.org/10.1002/term.51

    Article  CAS  PubMed  Google Scholar 

  14. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. https://doi.org/10.1016/j.biomaterials.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  15. Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. Macromol Symp 262:89–96. https://doi.org/10.1002/masy.200850210

    Article  CAS  Google Scholar 

  16. Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64. https://doi.org/10.1007/s10570-006-9087-7

    Article  CAS  Google Scholar 

  17. Beinborn NA, Williams RO (2013) Polymeric biomaterials in pulmonary drug delivery. Polymeric biomaterials, medicinal and pharmaceutical applications, vol 2. CRC Press, Boca Raton

    Google Scholar 

  18. Adewuyi A, Oderinde RA, Rao BVSK, Prasad RBN (2012) Chemical composition and molecular speciation of the triacylglycerol of the oils of Lonchocarpus sericeus and Lonchocarpus cyanescens. Nat Prod Res 26:1954–1956. https://doi.org/10.1080/14786419.2011.643311

    Article  CAS  PubMed  Google Scholar 

  19. Adewuyi A, Pereira FV (2017) Cellulose nanocrystals from underutilized Polythia longifolia seed. Periodico Tche Quim 14:10–18

    CAS  Google Scholar 

  20. Zhang M, Zhang CJ, Shrestha S (2005) Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Huang. J Food Eng 67:333–337. https://doi.org/10.1016/j.jfoodeng.2004.04.036

    Article  Google Scholar 

  21. Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:121–128. https://doi.org/10.1016/j.foodres.2012.10.013

    Article  CAS  Google Scholar 

  22. Lecumberri E, Mateos R, Izquierdo-Pulido M, Rupérez P, Goya L, Bravo L (2007) Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theebroma cacao L.). Food Chem 104:948–954. https://doi.org/10.1016/j.foodchem.2006.12.054

    Article  CAS  Google Scholar 

  23. Adewuyi A, Otuechere CA, Oteglolade ZO, Unuabonah EI (2015) Evaluation of the safety profile and antioxidant activity of fatty hydroxamic acid from underutilized seed oil of Cyperus esculentus. J Acute Dis 4:230–235. https://doi.org/10.1016/j.joad.2015.04.010

    Article  Google Scholar 

  24. Adewuyi A, Otuechere CA, Adebayo OL, Anazodo C, Pereira FV (2018) Renal toxicological evaluations of sulphonated nanocellulose from Khaya sengalensis seed in Wistar rats. Chem-Biol Interact 284:56–68. https://doi.org/10.1016/j.cbi.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  25. Otuechere CA, Madarikan G, Tinuala S, Bankole O, Osho A (2014) Virgin coconut oil protects against liver damage in albino rats challenged with the anti-folate combination, trimethoprim-sulfamethoxazole. J Basic Clin Physiol Pharmacol 25:249–253. https://doi.org/10.1515/jbcpp-2013-0059

    Article  CAS  PubMed  Google Scholar 

  26. Misra HP, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinines. J Biol Chem 247:188–192

    Article  CAS  PubMed  Google Scholar 

  27. Luck H (1974) Catalase. In: Bergmeyer J, Grabi M (eds) In methods of enzymatic analysis. Academic Press, New York, pp 885–890

    Google Scholar 

  28. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Sci 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  Google Scholar 

  29. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  30. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  31. Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189. https://doi.org/10.1016/S0076-6879(94)33021-2

    Article  CAS  Google Scholar 

  32. Varshney R, Kale RK (1990) Effect of calmodulin antagonist on radiation induced lipid peroxidation in microsomes. Int J Rad Biol 58:733–743. https://doi.org/10.1080/09553009014552121

    Article  CAS  PubMed  Google Scholar 

  33. Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Rad Biol Med 43:645–657. https://doi.org/10.1016/j.freeradbiomed.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  34. Gornall AG, Bardawill CJ, David MM (1948) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    Article  CAS  Google Scholar 

  35. Candido RG, Goncalves AR (2016) Synthesis of cellulose acetate and carboxymethyl cellulose from sugarcane straw. Carbohydr Polym 152:679–686. https://doi.org/10.1016/j.carbpol.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  36. Babiker ME, Aziz ARA, Heikal M, Yusup S, Abakar M (2013) Pyrolysis characteristics of Phoenix dactylifera date palm seeds using thermo-gravimetric analysis (TGA). IJESD 4:521–524. https://doi.org/10.7763/IJESD.2013.V4.406

    Article  Google Scholar 

  37. Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581. https://doi.org/10.1016/j.carbpol.2010.10.016

    Article  CAS  Google Scholar 

  38. Chanda M (2013) Introduction to polymer science and chemistry: a problem-solving approach, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Niaounakis M (2015) Properties. Biopolymers: applications and trends. William Andrew, pp 91–138. https://doi.org/10.1016/B978-0-323-35399-1.00002-8

  40. Calhoun A (2016) Polypropylene. Multilayer flexible packaging, 2nd edn. William Andrew, pp 35–45. https://doi.org/10.1016/B978-0-323-37100-1.00003-X

  41. Zeus Industrial Products, Inc (2019) An introduction to the polymer process and drawn fiber. https://www.azom.com/article.aspx?ArticleID=15220

  42. Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from Pomelo (Citrus grandis) Albedo. J Nutr Food Sci 5:334–337. https://doi.org/10.4172/2155-9600.1000334

    Article  CAS  Google Scholar 

  43. Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  44. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, London

    Book  Google Scholar 

  45. Hanaor DAH, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Cer Soc 32:235–244. https://doi.org/10.1016/j.jeurceramsoc.2011.08.015

    Article  CAS  Google Scholar 

  46. Salopek B, Krasic D, Filipovic S (1992) Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik 4:147–151

    Google Scholar 

  47. Ashraf S, Saeed SMG, Sayeed SA, Ali R (2012) Impact of microwave treatment on the functionality of cereals and legumes. Int J Agric Biol 14:365–370

    CAS  Google Scholar 

  48. Yalegama LLWC, Karunaratne DN, Sivakanesan R, Jayasekara C (2013) Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chem 141:124–130. https://doi.org/10.1016/j.foodchem.2013.02.118

    Article  CAS  PubMed  Google Scholar 

  49. Benítez V, Cantera S, Aguilera Y, Mollá E, Esteban RM, Díaz MF, Martin-Cabrejas MA (2013) Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Res Int 50:64–69. https://doi.org/10.1016/j.foodres.2012.09.044

    Article  CAS  Google Scholar 

  50. Anderson RL, Owens JW, Timms CW (1992) The toxicity of purified cellulose in studies with laboratory animals. Canc lett 63:83–92. https://doi.org/10.1016/0304-3835(92)90057-3

    Article  CAS  Google Scholar 

  51. Thomas B, Rao A, Prasad BR, Kumari S (2014) Serum levels of antioxidants and superoxide dismutase in periodontitis patients with diabetes type 2. J Indian Soc Periodontol 18:451–455. https://doi.org/10.4103/0972-124X.138686

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maxwell SR (1995) Prospects for the use of antioxidant therapies. Drugs 49:345–361. https://doi.org/10.2165/00003495-199549030-00003

    Article  CAS  PubMed  Google Scholar 

  53. Sechi LA, Ceriello A, Griffin CA, Catena C, Amstad P, Schambelan M, Bartoli E (1997) Renal antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus. Diabetologia 40:23–29. https://doi.org/10.1007/s001250050638

    Article  CAS  PubMed  Google Scholar 

  54. Ismail NA, Okasha SH, Dhawan A, Abdel-Rahman AO, Shaker OG, Sadik NA (2010) Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease. Saudi J Gastroenterol 16:90–94. https://doi.org/10.4103/1319-3767.61234

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chowdhury P, Soulsby M (2002) Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet. Ann Clin Lab Sci 32:188–192

    CAS  PubMed  Google Scholar 

  56. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Farah HS, Al-Atoom AA, Shehab GM (2012) Explanation of the decrease in alkaline phosphatase (ALP) activity in hemolysed blood samples from the clinical point of view: in vitro study. Jordan J Biol Sci 5:125–128

    CAS  Google Scholar 

  58. Arise RO, Davies FF, Malomo SO (2008) Independent and interactive effect of Mg2+ and Co2+ on some kinetic parameters of rat kidney alkaline phosphatase. Sci Res Essays 3:488–494

    Google Scholar 

  59. Ray CS, Singh B, Jena I, Behera S, Ray S (2017) Low alkaline phosphatase (ALP) in adult population an indicator of Zinc (Zn) and Magnesium (Mg) deficiency. Curr Res Nutr Food Sci 5:345–352. https://doi.org/10.12944/CRNFSJ.5.3.20

    Article  Google Scholar 

  60. Ede JD, Ong KJ, Goergen M, Rudie A, Pomeroy-Carter CA, Shatkin JA (2019) Risk analysis of cellulose nanomaterials by inhalation: current state of science. Nanomaterials 9:337. https://doi.org/10.3390/nano9030337

    Article  CAS  PubMed Central  Google Scholar 

  61. Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33. https://doi.org/10.1089/ind.2014.0024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by TWAS-CNPq. The authors are also grateful to TWAS-CNPq for awarding a postdoctoral fellowship at Universidade Federal de Minas Gerais, Minas Gerais, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale Adewuyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving animals were in accordance with the animal handling guidelines of the Redeemer’s University Committee on Ethics for Scientific Research that governs the handling of laboratory animals. This article does not contain any studies with human.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewuyi, A., Otuechere, C.A., Adebayo, O.L. et al. Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp. Polym. Bull. 78, 1149–1173 (2021). https://doi.org/10.1007/s00289-020-03152-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03152-0

Keywords

Navigation