Skip to main content
Log in

A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To make clear the effect and mechanism of sericite mica (SM) modified by silane coupling agents (SCA) on the morphology and properties of polyimide (PI) composites, the SM modified by different SCA including 3-aminopropyltriethoxysilane (KH550), 3-glycidoxypropyltrimethoxysilane (KH560) and 3-methacryloxypropyltrimethoxysilane (KH570), respectively, with equal grafting rate was prepared and used to prepare a series of PI/SM composites with the same SM content (5.0 wt%) by in situ polymerization. The effects of different SCA on the structure and properties of PI composites were studied by means of FT-IR, XRD, SEM, X-ray photoelectron spectroscopy, TGA, tensile and dielectric tests, and their influence mechanism was analyzed. The results showed two-phase interfacial adhesion between KH550-SM and PI matrix was the strongest. PI/KH550-SM composite exhibited the best excellent thermal and mechanical properties, the lowest dielectric constant and loss. The investigation would be of great value for improving the interfacial effects between SM and PI matrix and developing PI composites in relevant application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li D, Yang Y, Yang C et al (2015) Synthesis and characterization of a novel high-temperature structural adhesive based on MDA-BAPP-BTDA co-polyimide. J Macromol Sci A 52:540–547

    CAS  Google Scholar 

  2. Babanzadeh S, Mahjoub AR, Mehdipour-Ataei S (2010) Novel soluble thermally stable silane-containing aromatic polyimides with reduced dielectric constant. Polym Degrad Stabil 95:2492–2498

    CAS  Google Scholar 

  3. Zha J, Jia H, Wang H et al (2012) Tailored ultralow dielectric permittivity in high-performance fluorinated polyimide films by adjusting nanoporous characterisitics. J Phys Chem C 116:23676–23681

    CAS  Google Scholar 

  4. Li J, Zhang G, Zhu Q et al (2017) Synthesis and properties of ultralow dielectric constant porous polyimide films containing trifluoromethyl groups. J Appl Polym Sci 134:44494

    Google Scholar 

  5. Liu L, Shi H, Weng L et al (2014) The effects of particle size on the morphology and properties of polyimide/nano-Al2O3 composite films. Polym Polym Compos 22:117–121

    CAS  Google Scholar 

  6. Chen Y, Li D, Yang W et al (2018) Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymer 140:56–72

    CAS  Google Scholar 

  7. Wheeler JCG (2005) Effects of converter pulses on the electrical insulation in low and medium voltage motors. IEEE Electr Insul Mag 2:22–29

    Google Scholar 

  8. Wu G, Wu J, Zhou L et al (2010) Microscopic view of aging mechanism of polyimide film under pulse voltage in presence of partial discharge. IEEE Trans Dielectr Electr Insul 17:125–132

    CAS  Google Scholar 

  9. Hu P, Sun W, Fan M et al (2018) Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl Surf Sci 458:743–750

    CAS  Google Scholar 

  10. Park C, Ounaies Z, Watson KA et al (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    CAS  Google Scholar 

  11. Chang C, Chen W (2009) Synthesis and optical properties of polyimide-silica hybrid thin films. Mater Chem Phys 113:567–573

    Google Scholar 

  12. Zhang N, Qu J, Tan B et al (2013) Non-isothermal crystallization kinetics and morphology of mica particles filled biodegradable poly(butylene succinate). J Appl Polym Sci 130:2544–2556

    CAS  Google Scholar 

  13. Tamura K, Yokoyama S, Pascua C et al (2008) New age of polymer nanocomposites containing dispersed high-aspect-ratio silicate nanolayers. Chem Mater 20:2242–2246

    CAS  Google Scholar 

  14. Uno K, Tamura K, Yamada H et al (2009) Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica. Appl Clay Sci 46:81–87

    CAS  Google Scholar 

  15. Da W, Young J, Dae S et al (2018) Thermal stability and Young's modulus of mechanically exfoliated flexible mica. Curr Appl Phys 18:1486–1491

    Google Scholar 

  16. Chen M, Wan C, Shou W et al (2008) Effects of interfacial adhesion on properties of polypropylene/wollastonite composites. J Appl Polym Sci 107:1718–1723

    CAS  Google Scholar 

  17. Shen J, Huang W, Wu L et al (2007) Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Compos A Appl Sci 38:1331–1336

    Google Scholar 

  18. Joseph K, Varghese S, Kalaprasad G et al (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym J 32:1243–1250

    CAS  Google Scholar 

  19. Zhou X, Dai G, Guo W et al (2000) Influence of functionalized polyolefin on interfacial adhesion of glass fiber-reinforced polypropylene. J Appl Polym Sci 76:1359–1365

    CAS  Google Scholar 

  20. Kim J, Seong D, Kang T et al (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905

    CAS  Google Scholar 

  21. Zhang Y, Fu S, Li K et al (2005) Investigation of polyimide–mica hybrid films for cryogenic applications. Compos Sci Technol 65:1743–1748

    CAS  Google Scholar 

  22. Wu G, Cheng Y, Wang Z et al (2017) In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J Mater Sci Mater Electron 28:576–581

    CAS  Google Scholar 

  23. Li X, Wu J, Tang C et al (2019) High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos B Eng 159:355–361

    CAS  Google Scholar 

  24. Esmaielzadeh S, Ahmadizadegan H (2018) Preparation and characterization of novel polyimide/functionalized ZnO bionanocomposite for gas separation and study of their antibacterial activity. Solid State Sci 78:46–57

    CAS  Google Scholar 

  25. Li Y, Pan Q, Li M et al (2007) Preparation and mechanical properties of novel polyimide/T-silica hybrid films. Compos Sci Technol 67:54–60

    CAS  Google Scholar 

  26. Xie S, Zhu B, Li J et al (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23:797–801

    CAS  Google Scholar 

  27. Choi S, Kim I, Hong J et al (2007) Effect of the dispersibility of BaTiO3 nanoparticles in BaTiO3/polyimide composites on the dielectric properties. Mater Lett 61:2478–2481

    CAS  Google Scholar 

  28. Zhang Q, Li D, Lai D et al (2016) Preparation, microstructure, mechanical, and thermal properties of in situ polymerized polyimide/organically modified sericite mica composites. Polym Compos 37:2243–2251

    CAS  Google Scholar 

  29. Samakande A, Hartmann P, Cloete V et al (2007) Use of acrylic based surfmers for the preparation of exfoliated polystyrene-clay nanocomposites. Polymer 48:1490–1499

    CAS  Google Scholar 

  30. Zhang Y, Dang Z, Xin J et al (2010) Dielectric properties of polyimide-mica hybrid films. Macromol Rapid Commun 26:1473–1477

    CAS  Google Scholar 

  31. Zheng Y, Zhai Y, Li G et al (2011) Synthesis and properties of a high-molecular-weight poly(amic acid) and polyimide based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. J Appl Polym Sci 121:702–706

    CAS  Google Scholar 

  32. Xiao Y, Chun TS, Guan HM et al (2007) Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation. J Membr Sci 302:254–264

    CAS  Google Scholar 

  33. Wallach ML (1968) Structure–property relations of polyimide films. J Polym Sci Pol Chem 6:953–960

    CAS  Google Scholar 

  34. Karatchevtseva I, Zhang Z, Hanna J et al (2006) Electrosynthesis of macroporous polyaniline-V2O5 nanocomposites and their unusual magnetic properties. Chem Mater 18:4908–4916

    CAS  Google Scholar 

  35. Mya K, Wang K, Chen L et al (2008) The effect of nanofiller on the thermomechanical properties of polyimide/clay nanocomposites. Macromol Chem Phys 209:643–650

    CAS  Google Scholar 

  36. Zhao Y, Zhang Y, Bai S et al (2016) Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos B Eng 94:102–108

    CAS  Google Scholar 

  37. Ash B, Siegel R, Schadler L (2004) Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites. Macromolecules 37:1358–1369

    CAS  Google Scholar 

  38. Zhao Q, Qian J, Zhu M et al (2009) Facile fabrication of polyelectrolyte complex/carbon nanotube nanocomposites with improved mechanical properties and ultra-high separation performance. J Mater Chem 19:8732–8740

    CAS  Google Scholar 

  39. Liang Z, Yin J, Xu H (2003) Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers. Polymer 44:1391–1399

    CAS  Google Scholar 

  40. Chang J, An Y, Cho D et al (2003) Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica(II). Polymer 44:3715–3720

    CAS  Google Scholar 

  41. Huang C, Zhang Q (2004) Enhanced dielectric and electromechnical responses in high dielectric constant all-polymer percolative composites. Adv Funct Mater 14:501–506

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Hunan Science and Technology Plan Foundation of China “Research on Key Technologies of Advanced Functional Polyimide Materials” under Grant Number 2018GK2063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Li, D., Zeng, D. et al. A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization. Polym. Bull. 78, 863–883 (2021). https://doi.org/10.1007/s00289-020-03143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03143-1

Keywords

Navigation