Skip to main content
Log in

Thermal behavior and soil biodegradation for blends of poly(hydroxybutyrate)/ethylene vinyl acetate copolymer (EVA 60) with 1 mass% NH4Cl

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(hydroxybutyrate) (PHB)/ethylene vinyl acetate copolymer (EVA 60) blends in the ratio from 90:10 to 30:70 by weight, where vinyl acetate content 60 mol%, and its composite with 1 mass% NH4Cl, were investigated by utilizing differential scanning calorimetry and polarizing optical microscopy. The experimental results showed that all investigated blend compositions exhibited two separate glass transition temperatures, corresponding to their components, suggesting immiscibility of PHB with EVA 60. The values of melt crystallization peak temperature and melting peak temperature of PHB in the blend and its composites were found to be almost composition independent, while the crystallinity percentage was slightly decreased with increasing the content of EVA 60 and increased in the presence of NH4Cl compared to pure PHB. The modified Avrami equation and the combination of Avrami and Ozawa methods were utilized to analyze the non-isothermal melt crystallization process successfully. Moreover, the presence of NH4Cl shortened the crystallization half-time and an increase in Avrami crystallization constant at various cooling rates. Polarized optical micrographs of PHB composites showed a large number of small, averaged sized spherulites compared with pure PHB. Additionally, a large number of small round no birefringence regions was appeared in the PHB/EVA 60 blend, which increased with increasing EVA 60 content, indicating a phase separation of PHB and EVA 60. The biodegradation for PHB composites in soil was tested via mass loss percentage and SEM. The results revealed that the biodegradability of PHB component in the blend was enhanced with an addition of NH4Cl and slightly decreased with increasing EVA 60 content. Such results make PHB/EVA60/1 mass%NH4Cl composites a promising candidate to substitute synthetic polymers derived from petroleum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gassner F, Owen A (1992) On the physical properties of BIOPOL/ethylene-vinyl acetate blends. Polymer 33:2508–2512. https://doi.org/10.1016/0032-3861(92)91131-K

    Article  CAS  Google Scholar 

  2. El-Hadi AM (2017) Improvement of the miscibility by combination of poly(3-hydroxy butyrate) PHB and poly(propylene carbonate) PPC with additives. J Polym Environ 25:728–738. https://doi.org/10.1007/s10924-016-0863-7

    Article  CAS  Google Scholar 

  3. Lin K-W, Lan C-H, Sun Y-M (2016) Poly[(R)3-hydroxybutyrate] (PHB)/poly(l-lactic acid) (PLLA) blends with poly(PHB/PLLA urethane) as a compatibilizer. Polym Degrad Stab 134:30–40. https://doi.org/10.1016/j.polymdegradstab.2016.09.017

    Article  CAS  Google Scholar 

  4. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270. https://doi.org/10.1016/j.eurpolymj.2013.11.009

    Article  CAS  Google Scholar 

  5. El-Taweel SHH, Stoll B (2012) Spherulitic growth rate of blends of polyhydroxybutyrate (PHB) with oligomeric atactic PHB-diol. J Macromol Sci B Phys 51:567–579. https://doi.org/10.1080/00222348.2011.609781

    Article  CAS  Google Scholar 

  6. Zhang S, Sun X, Ren Z et al (2015) The development of a bilayer structure of poly(propylene carbonate)/poly(3-hydroxybutyrate) blends from the demixed melt. Phys Chem Chem Phys 17:32225–32231. https://doi.org/10.1039/c5cp06076a

    Article  CAS  PubMed  Google Scholar 

  7. Vanovčanová Z, Alexy P, Feranc J et al (2016) Effect of PHB on the properties of biodegradable PLA blends. Chem Pap 70:1408–1415. https://doi.org/10.1515/chempap-2016-0075

    Article  CAS  Google Scholar 

  8. Yoon J-S, Oh S-H, Kim M-N (1998) Compatibility of poly(3-hydroxybutyrate)/poly(ethylene-co-vinyl acetate) blends. Polymer 39:2479–2487. https://doi.org/10.1016/S0032-3861(97)00556-9

    Article  CAS  Google Scholar 

  9. You J-W, Chiu H-J, Don T-M (2003) Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly(3-hydroxybutyrate) with low molecular weight poly(ethylene oxide). Polymer 44:4355–4362. https://doi.org/10.1016/S0032-3861(03)00348-3

    Article  CAS  Google Scholar 

  10. Ma P, Xu P, Chen M et al (2014) Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydr Polym 108:299–306. https://doi.org/10.1016/j.carbpol.2014.02.058

    Article  CAS  PubMed  Google Scholar 

  11. Bartczak Z, Galeski A, Kowalczuk M et al (2013) Tough blends of poly(lactide) and amorphous poly([R, S]-3-hydroxy butyrate)—morphology and properties. Eur Polym J 49:3630–3641. https://doi.org/10.1016/j.eurpolymj.2013.07.033

    Article  CAS  Google Scholar 

  12. Silva R, Carvalho GM, Muniz EC, Rubira AF (2010) Miscibility influence in the thermal stability and kinetic parameters of poly(3-hydroxybutyrate)/poly(ethylene terephthalate) sulphonated blends. Polímeros 20:153–158. https://doi.org/10.1590/S0104-14282010005000023

    Article  CAS  Google Scholar 

  13. Li H, Lu X, Yang H, Hu J (2015) Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends. J Therm Anal Calorim 122:817–829. https://doi.org/10.1007/s10973-015-4824-5

    Article  CAS  Google Scholar 

  14. Arrieta MP, Fortunati E, Dominici F et al (2015) Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056

    Article  CAS  PubMed  Google Scholar 

  15. Arrieta MP, del Castro-López M, Rayón E et al (2014) Plasticized poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62:10170–10180. https://doi.org/10.1021/jf5029812

    Article  CAS  PubMed  Google Scholar 

  16. Dufresne A, Vincendon M (2000) Poly(3-hydroxybutyrate) and poly(3-hydroxyoctanoate) blends: morphology and mechanical behavior. Macromolecules 33:2998–3008. https://doi.org/10.1021/ma991854a

    Article  CAS  Google Scholar 

  17. El-Taweel SH, Höhne GWH, Mansour AA et al (2004) Glass transition and the rigid amorphous phase in semicrystalline blends of bacterial polyhydroxybutyrate PHB with low molecular mass atactic R,S-PHB-diol. Polymer 45:983–992. https://doi.org/10.1016/j.polymer.2003.12.007

    Article  CAS  Google Scholar 

  18. Vergara-Porras B, Gracida-Rodríguez JN, Pérez-Guevara F et al (2016) Thermal processing influence on mechanical, thermal, and biodegradation behavior in poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends: a descriptive model. J Appl Polym Sci 133:1–12. https://doi.org/10.1002/app.43569

    Article  CAS  Google Scholar 

  19. El-Taweel SH, Stoll B, Schick C (2011) Crystallization kinetics and miscibility of blends of polyhydroxybutyrate (PHB) with ethylene vinyl acetate copolymers (EVA). E-Polymers 11:1–16. https://doi.org/10.1515/epoly.2011.11.1.191

    Article  Google Scholar 

  20. El-Taweel SH, Khater M (2015) Mechanical and thermal behavior of blends of poly(hydroxybutyrate-co-hydroxyvalerate) with ethylene vinyl acetate copolymer. J Macromol Sci B 54:1225–1232. https://doi.org/10.1080/00222348.2015.1085274

    Article  CAS  Google Scholar 

  21. Tri PN, Domenek S, Guinault A, Sollogoub C (2013) Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. J Appl Polym Sci 129:3355–3365. https://doi.org/10.1002/app.39056

    Article  CAS  Google Scholar 

  22. El-Taweel S, Al-Ahmadi A, Alhaddad O, Okasha R (2018) Cationic cyclopentadienyliron complex as a novel and successful nucleating agent on the crystallization behavior of the biodegradable PHB polymer. Molecules 23:2703. https://doi.org/10.3390/molecules23102703

    Article  CAS  PubMed Central  Google Scholar 

  23. Uzun G, Aydemir D (2017) Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method. Bull Mater Sci 40:383–393. https://doi.org/10.1007/s12034-017-1371-7

    Article  CAS  Google Scholar 

  24. Iulianelli GCV, David GS, dos Santos TN et al (2018) Influence of TiO2 nanoparticle on the thermal, morphological and molecular characteristics of PHB matrix. Polym Test 65:156–162. https://doi.org/10.1016/j.polymertesting.2017.11.018

    Article  CAS  Google Scholar 

  25. Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35:999–1012. https://doi.org/10.1002/pc.22746

    Article  CAS  Google Scholar 

  26. Tsui A, Frank CW (2014) Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 55:6364–6372. https://doi.org/10.1016/j.polymer.2014.09.068

    Article  CAS  Google Scholar 

  27. Organ SJ, Barham PJ (1992) Nucleation of poly(hydroxy butyrate) by epitaxy on nitrogen-containing compounds. J Mater Sci 27:3239–3242. https://doi.org/10.1007/BF01116019

    Article  CAS  Google Scholar 

  28. El-Taweel SH, Al-Ahmadi AO (2019) Isothermal crystallization kinetics of poly(3-hydroxybutyrate/poly(ethylene-co-vinyl acetate) blends enhanced by NH4Cl as a nucleating agent. J Macromol Sci B Phys 58:518–534. https://doi.org/10.1080/00222348.2019.1593620

    Article  CAS  Google Scholar 

  29. El-Taweel SH, Al-Ahmadi A (2019) Non-isothermal crystallization kinetics of poly(3-hydroxybutyrate)/EVA 80 blends enhanced by NH4Cl as a nucleating agent. J Therm Anal Calorim 137:1657–1672. https://doi.org/10.1007/s10973-019-08032-y

    Article  CAS  Google Scholar 

  30. Hay JN (1971) Application of the modified Avrami equations to polymer crystallisation kinetics. Brit Polym J 3:74–82. https://doi.org/10.1002/pi.4980030205

    Article  CAS  Google Scholar 

  31. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575. https://doi.org/10.1002/pen.11700

    Article  CAS  Google Scholar 

  32. Ziaee Z, Supaphol P (2006) Non-isothermal melt- and cold-crystallization kinetics of poly(3-hydroxybutyrate). Polym Test 25:807–818. https://doi.org/10.1016/j.polymertesting.2006.04.009

    Article  CAS  Google Scholar 

  33. Boyandin AN, Prudnikova SV, Karpov VA et al (2013) Microbial degradation of polyhydroxyalkanoates in tropical soils. Int Biodeterior Biodegrad 83:77–84. https://doi.org/10.1016/j.ibiod.2013.04.014

    Article  CAS  Google Scholar 

  34. Ong SY, Sudesh K (2016) Effects of polyhydroxyalkanoate degradation on soil microbial community. Polym Degrad Stab 131:9–19. https://doi.org/10.1016/j.polymdegradstab.2016.06.024

    Article  CAS  Google Scholar 

  35. Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly(ethylene glycol) on the thermal, mechanical, morphological, physical-chemical and biodegradation properties of poly(3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959. https://doi.org/10.1016/j.polymdegradstab.2006.02.008

    Article  CAS  Google Scholar 

  36. Jiang L, Zhang J (2013) Biodegradable polymers and polymer blends. In: Ebnesajjad S (ed) Handbook of biopolymers and biodegradable plastics. Elsevier, Amsterdam, pp 109–128

    Chapter  Google Scholar 

  37. Pathak S, Sneha C, Mathew BB (2014) Bioplastics: its timeline based scenario & challenges. J Polym Biopolym Phys Chem 2:84–90. https://doi.org/10.12691/jpbpc-2-4-5

    Article  CAS  Google Scholar 

  38. Acik G (2019) Soybean oil modified bio-based poly(vinyl alcohol)s via ring-opening polymerization. J Polym Environ 27:2618–2623. https://doi.org/10.1007/s10924-019-01547-3

    Article  CAS  Google Scholar 

  39. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO (2019) Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polym Degrad Stab 165:43–48. https://doi.org/10.1016/j.polymdegradstab.2019.04.015

    Article  CAS  Google Scholar 

  40. Höhne GWH, Hemminger WF, Flammersheim H-J (2003) Calibration of differential scanning calorimeters. Differential scanning calorimetry. Springer, Berlin, pp 65–114

    Chapter  Google Scholar 

  41. Mitomo H, Barham PJ, Keller A (1987) Crystallization and morphology of poly(β-hydroxybutyrate) and its copolymer. Polym J 19:1241–1253. https://doi.org/10.1295/polymj.19.1241

    Article  CAS  Google Scholar 

  42. Tang CY, Chen DZ, Tsui CP et al (2006) Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly(3-hydroxybutyrate) composites. J Appl Polym Sci 102:5388–5395. https://doi.org/10.1002/app.25016

    Article  CAS  Google Scholar 

  43. Yu H, Qin Z, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21:478–484. https://doi.org/10.1016/S1002-0071(12)60086-0

    Article  Google Scholar 

  44. Jing X, Qiu Z (2012) Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate). Ind Eng Chem Res 51:13686–13691. https://doi.org/10.1021/ie3018466

    Article  CAS  Google Scholar 

  45. Avrami M (1940) Kinetics of phase change. II Transformation–time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  46. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158. https://doi.org/10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  47. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144. https://doi.org/10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  48. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509. https://doi.org/10.1007/s10853-007-1527-8

    Article  CAS  Google Scholar 

  49. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25:733–738. https://doi.org/10.1002/marc.200300295

    Article  CAS  Google Scholar 

  50. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C Polym Symp 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  51. Nerkar M, Ramsay JA, Ramsay BA, Kontopoulou M (2014) Melt compounded blends of short and medium chain-length poly-3-hydroxyalkanoates. J Polym Environ 22:236–243. https://doi.org/10.1007/s10924-013-0635-6

    Article  CAS  Google Scholar 

  52. Peng S, An Y, Chen C et al (2003) Miscibility and crystallization behavior of poly(3-hydroxyvalerate-co-3-hydroxyvalerate)/poly(propylene carbonate) blends. J Appl Polym Sci 90:4054–4060. https://doi.org/10.1002/app.12970

    Article  CAS  Google Scholar 

  53. Lovera D, Márquez L, Balsamo V et al (2007) Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol Chem Phys 208:924–937. https://doi.org/10.1002/macp.200700011

    Article  CAS  Google Scholar 

  54. Sheng C, Zhang T, Yuan Y et al (2014) Effect of a small amount of poly(3-hydroxybutyrate) on the crystallization behavior of poly(l-lactic acid) in their immiscible and miscible blends during physical aging. Polym Int 63:1270–1277. https://doi.org/10.1002/pi.4667

    Article  CAS  Google Scholar 

  55. Xing P, Ai X, Dong L, Feng Z (1998) Miscibility and crystallization of poly(β-hydroxybutyrate)/poly(vinyl acetate-co-vinyl alcohol) blends. Macromolecules 31:6898–6907. https://doi.org/10.1021/ma980256d

    Article  CAS  Google Scholar 

  56. Tien N-D, Prud’homme RE (2018) Crystallization behavior of semicrystalline immiscible polymer blends. Elsevier, Amsterdam

    Book  Google Scholar 

  57. El-Taweel SH, Abboudi M (2020) Nonisothermal crystallization kinetics of PLA/nanosized YVO4 composites as a novel nucleating agent. J Appl Polym Sci 137:48340. https://doi.org/10.1002/app.48340

    Article  CAS  Google Scholar 

  58. Huang J-W (2009) Dispersion, crystallization kinetics, and parameters of Hoffman–Lauritzen theory of polypropylene and nanoscale calcium carbonate composite. Polym Eng Sci 49:1855–1864. https://doi.org/10.1002/pen.21337

    Article  CAS  Google Scholar 

  59. Gestí S, Zanetti M, Lazzari M et al (2008) Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of isoconversional analysis to nonisothermal crystallization. J Polym Sci B Polym Phys 46:2234–2248. https://doi.org/10.1002/polb.21555

    Article  CAS  Google Scholar 

  60. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M (2006) Crystallization behavior of polyhydroxybutyrate in model composites with kenaf fibers. J Appl Polym Sci 102:804–809. https://doi.org/10.1002/app.24139

    Article  CAS  Google Scholar 

  61. D’Amico DA, Manfredi LB, Cyras VP (2012) Crystallization behavior of poly(3-hydroxybutyrate) nanocomposites based on modified clays: effect of organic modifiers. Thermochim Acta 544:47–53. https://doi.org/10.1016/j.tca.2012.06.012

    Article  CAS  Google Scholar 

  62. Vyazovkin S (2017) Isoconversional kinetics of polymers: the decade past. Macromol Rapid Commun 38:1600615. https://doi.org/10.1002/marc.201600615

    Article  CAS  Google Scholar 

  63. Vyazovkin S (2016) A time to search: finding the meaning of variable activation energy. Phys Chem Chem Phys 18:18643–18656. https://doi.org/10.1039/C6CP02491B

    Article  CAS  PubMed  Google Scholar 

  64. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532. https://doi.org/10.1002/marc.200600404

    Article  CAS  Google Scholar 

  65. Vyazovkin S, Yancey B, Walker K (2014) Polymer melting kinetics appears to be driven by heterogeneous nucleation. Macromol Chem Phys 215:205–209. https://doi.org/10.1002/macp.201300636

    Article  CAS  Google Scholar 

  66. dos Santos Silva ID, Guimarães Jaques N, da Cruz Barbosa Neto M et al (2018) Melting and crystallization of PHB/ZnO compounds: effect of heating and cooling cycles on phase transition. J Therm Anal Calorim 132:571–580. https://doi.org/10.1007/s10973-017-6749-7

    Article  CAS  Google Scholar 

  67. Casarin SA, Rodrigues CP, de Souza Júnior OF et al (2017) Biodegradation in soil of the PHB/Wood Flour (80/20) and PHB/Sisal Fiber (80/20) tubes. Mater Res 20:47–50. https://doi.org/10.1590/1980-5373-mr-2016-0904

    Article  Google Scholar 

  68. Batista KC, Silva DAK, Coelho LAF et al (2010) Soil biodegradation of PHBV/Peach palm particles biocomposites. J Polym Environ 18:346–354. https://doi.org/10.1007/s10924-010-0238-4

    Article  CAS  Google Scholar 

  69. Arcos-Hernandez MV, Laycock B, Pratt S et al (2012) Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polym Degrad Stab 97:2301–2312. https://doi.org/10.1016/j.polymdegradstab.2012.07.035

    Article  CAS  Google Scholar 

  70. Duan B, Wang M, Zhou W-Y, Cheung W-L (2011) Nonisothermal melt-crystallization behavior of calcium phosphate/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposite microspheres. Polym Eng Sci 51:1580–1591. https://doi.org/10.1002/pen.21940

    Article  CAS  Google Scholar 

  71. Chen ZY, Hu ZX, Xiang HX et al (2017) Crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with WS2 as nucleating agent. Mater Sci Forum 898:2239–2245. https://doi.org/10.4028/www.scientific.net/MSF.898.2239

    Article  Google Scholar 

  72. D’Amico DA, Cyras VPP, Manfredi LBB et al (2014) Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta 594:80–88. https://doi.org/10.1016/j.tca.2014.08.023

    Article  CAS  Google Scholar 

  73. Buzarovska A, Grozdanov A (2009) Crystallization kinetics of poly(hydroxybutyrate-co-hydroxyvalerate) and poly(dicyclohexylitaconate) PHBV/PDCHI blends: thermal properties and hydrolytic degradation. J Mater Sci 44:1844–1850. https://doi.org/10.1007/s10853-008-3236-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SHE-T suggested the aim of the work and designed the experiments, and AOA-H performed the experiments under the supervision of SHE-T; SHE-T analyzed the data and wrote, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to S. H. El-Taweel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taweel, S.H., Al-Ahmadi, A.O. Thermal behavior and soil biodegradation for blends of poly(hydroxybutyrate)/ethylene vinyl acetate copolymer (EVA 60) with 1 mass% NH4Cl. Polym. Bull. 78, 729–751 (2021). https://doi.org/10.1007/s00289-020-03129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03129-z

Keywords

Navigation