Skip to main content

Advertisement

Log in

The grafted carbendazim and 2,4,6-tris(dimethylaminomethyl)phenyl group onto polyurethane to improve its antifungal effectiveness and hydrophilicity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The antifungal agent carbendazim and the water-compatible functional group 2,4,6-tris(dimethylaminomethyl)phenol (TDMP) were jointly grafted to polyurethane (PU) to develop a water-compatible antifungal PU. The water compatibility of the PU surface improved strikingly after the protonation of TDMP, as confirmed by water contact angle tests. The combined grafting of carbendazim and TDMP affected the melting and glass transition of soft segments and sharply increased the tensile stress and shape recovery capability. Carbendazim was selected as a grafted antifungal functional group due to its wide effective range of antifungal activity and its large production volume. PUs with grafted carbendazim and TDMP completely suppressed the growth of a mixture of fungi, unlike ordinary PU. Therefore, the joint grafting of both carbendazim and TDMP led to improved water compatibility, breaking tensile stress, shape recovery capability, and antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Munoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    CAS  Google Scholar 

  2. El-Refaie K, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Google Scholar 

  3. Liu R, Chen X, Hayouka Z, Chakraborty S, Falk SP, Weisblum B, Masters KS, Gellman SH (2013) Nylon-3 polymers with selective antifungal activity. J Am Chem Soc 135:5270–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rogalskyy S, Bardeau JF, Tarasyuk O, Fatyeyeva K (2012) Fabrication of new antifungal polyamide-12 material. Polym Int 61:686–691

    CAS  Google Scholar 

  5. Meng N, Zhou NL, Zhang SQ, Shen J (2009) Synthesis and antifungal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Appl Clay Sci 46:136–140

    CAS  Google Scholar 

  6. Paladini F, Cooper IR, Pollini M (2014) Development of antibacterial and antifungal silver-coated polyurethane foams as air filtration units for the prevention of respiratory diseases. J Appl Microbiol 116:710–717

    CAS  PubMed  Google Scholar 

  7. Xia N, Li N, Rao W, Yu J, Wu Q, Tan L, Li H, Gou L, Liang P, Li L, Meng X (2019) Multifunctional and flexible ZrO2-coated EGaIn nanoparticles for photothermal therapy. Nanoscale 11:10183–10189

    CAS  PubMed  Google Scholar 

  8. Gulla S, Lomada D, Srikanth V, Shankar MV, Reddy KR, Soni S, Reddy MC (2019) Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Methods Microbiol 46:255–293

    CAS  Google Scholar 

  9. Reddy KR, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S (2019) Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications. Methods Microbiol 46:227–254

    CAS  Google Scholar 

  10. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR (2019) Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Meth 160:107–116

    CAS  Google Scholar 

  11. Misra A, Jain S, Kishore D, Dave V, Reddy KR, Sadhu V, Dwivedi J, Sharma S (2019) A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their antibacterial evaluation. J Microbiol Methods 163:105648

    PubMed  Google Scholar 

  12. Nagaraja A, Jalageri MD, Puttaiahgowda YM, Reddy KR, Raghu AV (2019) A review on various maleic anhydride antimicrobial polymers. J Microbiol Methods 163:105650

    CAS  PubMed  Google Scholar 

  13. Subhani Q, Huang ZH, Zhu Z, Zhu Y (2013) Simultaneous determination of imidacloprid and carbendazim in water samples by ion chromatography with fluorescence detector and post-column photochemical reactor. Talanta 16:127–132

    Google Scholar 

  14. Patel GM, Rohit JV, Singhal RK, Kailasa SK (2015) Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sens Actuators B Chem 206:684–691

    CAS  Google Scholar 

  15. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Wang H, Huang L, Zhang S, He Y, Gao Q, Ye Q (2017) Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils. J Hazard Mater 328:70–79

    CAS  PubMed  Google Scholar 

  17. Xu JC, Rong XS, Tian T, Qiu FX (2014) Study on the determination of carbendazim in water and vegetable samples. Adv Mater Res 55:1351–1354

    Google Scholar 

  18. Pourreza N, Rastegarzadeh S, Larki A (2015) Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV–vis spectrophotometry. Talanta 134:24–29

    CAS  PubMed  Google Scholar 

  19. Rodriguez-Cuesta MJ, Boque R, Rius FX, Picon Zamora D, Martinez Galera M, Garrido Frenich A (2003) Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal Chim Acta 491:47–56

    CAS  Google Scholar 

  20. Cachoa C, Turiel E, Pérez-Conde C (2009) Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples. Talanta 78:1029–1035

    Google Scholar 

  21. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    CAS  PubMed  Google Scholar 

  22. Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M, Fernández-Martín F, de Andres A, Rioboo RJJ, Kubacka A, Ferrer M, Fernández-García M (2008) Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv Funct Mater 18:1949–1960

    CAS  Google Scholar 

  23. Popa A, Davidescu CM, Trif R, Ilia G, Iliescu S, Dehelean G (2003) Study of quaternary phosphonium salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on geltype’ styrene-divinylbenzene copolymers. React Funct Polym 55:151–158

    CAS  Google Scholar 

  24. Tamaki M, Kokuno M, Sasaki I, Suzuki Y, Iwama M, Saegusa K, Kikuchi Y, Shindo M, Kimura M, Uchida Y (2009) Syntheses of lowhemolytic antimicrobial gratisin peptides. Bioorg Med Chem Lett 19:2856–2859

    CAS  PubMed  Google Scholar 

  25. Feiertag P, Albert M, Ecker-Eckhofen E-M, Hayn G, Hönig H, Oberwalder HW, Saf R, Schmidt A, Schmidt O, Topchiev D (2003) Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun 24:567–570

    CAS  Google Scholar 

  26. Seymour RB, Kauffman GB (1992) Polyurethanes: a class of modern versatile materials. J Chem Ed 69:909–910

    CAS  Google Scholar 

  27. Engels HW, Pirkl HG, Albers R, Albach RW, Krause J, Hoffmann A, Casselmann H, Dormish J (2013) Polyurethanes: versatile materials and sustainable problem solvers for today's challenges. Angew Chem Int Ed 52:9422–9441

    CAS  Google Scholar 

  28. Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90

    CAS  PubMed  Google Scholar 

  29. Nevejans S, Ballarda N, Fernández M, Reck B, Asua JM (2019) Flexible aromatic disulfide monomers for high-performance self-healable linear and cross-linked poly(urethane-urea) coatings. Polymer 166:229–238

    CAS  Google Scholar 

  30. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci B 51:197–207

    CAS  Google Scholar 

  31. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah S (2012) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118

    Google Scholar 

  32. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis[methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    CAS  Google Scholar 

  33. Sellenet PH, Allison B, Applegate BM, Youngblood JP (2007) Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules 8:19–23

    CAS  PubMed  Google Scholar 

  34. Chung YC, Kim HY, Choi JW, Chun BC (2015) Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. J Appl Polym Sci 132:41676–41684

    Google Scholar 

  35. Chung YC, Kim HY, Choi JW, Chun BC (2017) Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane. Polym Bull 74:3721–3737

    CAS  Google Scholar 

  36. Kim HY, Choi JW, Chung YC, Chun BC (2017) The grafting of recycled polyol from waste polyurethane foam onto new polyurethane and its impact on shape recovery and water vapor permeation. Fiber Polym 18:842–851

    CAS  Google Scholar 

  37. Chung YC, Kim HY, Choi JW, Chun BC (2015) Modification of polyurethane by graft polymerization of poly (acrylic acid) for the control of molecular interaction and water compatibility. Polym Bull 72:2685–2703

    CAS  Google Scholar 

  38. Moss RA, Chung YC (1990) An efficient iodosobenzoate-functionalized polymer for the cleavage of reactive phosphates. Langmuir 6:1614–1616

    CAS  Google Scholar 

  39. Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions. ChemMedChem 7:22–31

    CAS  PubMed  Google Scholar 

  40. Tan K, Obendorf SK (2006) Surface modification of microporous polyurethane membrane with poly(ethylene glycol) to develop a novel membrane. J Membr Sci 274:150–157

    CAS  Google Scholar 

  41. Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289:199–209

    CAS  Google Scholar 

  42. Chung YC, Kim DE, Choi JW, Chun BC (2019) The temperature-sensitive water vapor permeation control of polyurethane membrane using the graft-polymerized poly(N-isopropylacrylamide) and the impact on the tensile strength and shape recovery effect. Polym Plast Technol 58:656–666

    CAS  Google Scholar 

  43. Chung YC, Kim SH, Bae JC, Chun BC (2018) Grafting of triphenylmethyl group onto polyurethane and the impact on the shape recovery and flexibility at extremely low temperature. Fiber Polym 19:1157–1165

    CAS  Google Scholar 

  44. Sekkar V, Gopalakrishnan S, Ambika Devi K (2003) Studies on allophanate-urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur Polym J 39:1281–1290

    CAS  Google Scholar 

  45. Sekkar V, Rama Rao M, Krishinamurthy VN, Jane SR (1996) Modeling of polyurethane networks based on hydroxy-terminated polybutadiene and poly(12-hydroxy stearic acid–co–TMP) ester polyol: correlation of network parameters with mechanical properties. J Appl Polym Sci 62:2317–2327

    CAS  Google Scholar 

  46. Cho JW, Jung YC, Chun BC, Chung YC (2004) Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. J Appl Polym Sci 92:2812–2816

    CAS  Google Scholar 

  47. Freij-Larsson C, Wesslen B (1993) Grafting of polyurethane surfaces with poly(ethylene glycol). J Appl Polym Sci 50:345–352

    CAS  Google Scholar 

  48. Archambault JG, John L (2004) Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloids Surf B 39:9–16

    CAS  Google Scholar 

  49. Chung YC, Lee DH, Choi JW, Chun BC (2018) Application of recycled polyol and benzimidazole to the enhancement of antifungal activity of polyurethane. J Appl Polym Sci 135:46600–46610

    Google Scholar 

  50. Chung YC, Kim HY, Choi JW, Chun BC (2018) Graft polymerization of 4-imidazole acrylic acid onto polyurethane for the improvement of water compatibility and antifungal activity. Polym Eng Sci 58:2088–2097

    CAS  Google Scholar 

  51. Chung YC, Choi JW, Chung HM, Chun BC (2012) The MDI-mediated lateral crosslinking of polyurethane copolymer and the impact on tensile properties and shape memory effect. Bull Korean Chem Soc 33:692–694

    CAS  Google Scholar 

  52. Choi T, Weksler J, Padsalgikar A, Runt J (2010) Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 51:4375–4382

    CAS  Google Scholar 

  53. Russo P, Lavorgna M, Piscitelli F, Acierno D, Di Maio L (2013) Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur Polym J 49:379–388

    CAS  Google Scholar 

  54. Kenawy ER, Al-Deyab SS, Omar Shaker N, El-Sadek BM, Khattab AHB (2009) Synthesis and antimicrobial activity of metronidazole containing polymer and copolymers. J Appl Polym Sci 113:818–826

    CAS  Google Scholar 

  55. Aumsuwan N, Danyus RC, Heinhorst S, Urban MW (2008) Attachment of ampicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules 9:1712–1718

    CAS  PubMed  Google Scholar 

  56. Kugel A, Chisholm B, Ebert S, Jepperson M, Jarabek L, Stafslien S (2010) Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin. Polym Chem 1:442–452

    CAS  Google Scholar 

  57. Aumsuwan N, Heinhorst S, Urban MW (2007) The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromol 8:3525–3530

    CAS  Google Scholar 

  58. Badrossamay MR, Sun G (2009) A study on melt grafting of N-halamine moieties onto polyethylene and their antibacterial activities. Macromolecules 42:1948–1954

    CAS  Google Scholar 

  59. Piccirillo C, Perni S, Gil-Thomas J, Prokopovich P, Wilson M, Pratten J, Parkin IP (2009) Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface. J Mater Chem 19:6167–6171

    CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01014308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Chun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YC., Park, J.E., Choi, J.W. et al. The grafted carbendazim and 2,4,6-tris(dimethylaminomethyl)phenyl group onto polyurethane to improve its antifungal effectiveness and hydrophilicity. Polym. Bull. 78, 621–642 (2021). https://doi.org/10.1007/s00289-020-03126-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03126-2

Keywords

Navigation