Skip to main content
Log in

Carrying system formula for eugenol encapsulation: glycodendritic polyamine dextran-G2.5, synthesis and in vitro antibacterial activity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel 2.5th-generation glycodendritic polyamine dextran with 96 arms (DPADx) was synthesized by the divergent method. 2.5th-generation dendrimer was obtained from the successive triplicate Michael addition with two amidation reactions using 0.5th-generation tris(2-aminoethyl)amine (TAEA-G0.5) as the initiator core. 2.5th-generation polyamine hydrazide (PAH) was obtained from hydrazine monohydrate. Finally, dextran was conjugated with PAH and so DPADx was obtained. FTIR, 1H- and 13C-NMR, elemental analysis, GPC, XRD, SEM, TGA, DSC and dynamic viscosity were used for structural analysis of products. Loading efficiency, capacity and yield (%) of eugenol-encapsulated glycodendrimer were calculated as 70%, 84% and 35%, respectively; by using UV–Vis analysis results, antimicrobial activity against Gram-positive (Staphylococcus aureus, Listeria monocytogenes and Enterococcus cesseliflour) and Gram-negative (Escherichia coli and Salmonella Typhimurium) bacteria was proven. The current study demonstrated the usability of the novel dendritic glycopolymer as an innovative and environmentally friendly way to encapsulate and shuttle of EOs without altering sensory characteristics and the functionality of these molecules. Therefore, its commercial application is possible in a variety of fields, such as pharmaceutic and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Franz C, Novak J (2010) Sources of essential oils. In: Baser KHC, Buvhbauer G (eds) Handbook of essential oils: science, technology and applications. CRC Press, Boca Raton, pp 39–82

    Google Scholar 

  2. Acik G (2019) Soybean oil modified bio-based poly(vinyl alcohol)s via ring-opening polymerization. J Polym Environ 27:2618–2623. https://doi.org/10.1007/s10924-019-01547-3

    Article  CAS  Google Scholar 

  3. Silvestre W, Livinalli N, Baldasso C, Tessaro I (2019) Pervaporation in the separation of essential oil components: a review. Trends Food Sci Technol 93:42–52. https://doi.org/10.1016/j.tifs.2019.09.003

    Article  CAS  Google Scholar 

  4. Dima C, Dima S (2015) Essential oils in foods: extraction, stabilization, and toxicity. Curr Opin Food Sci 5:29–35

    Article  Google Scholar 

  5. Laosinwattana C, Wichittrakarn P, Teerarak M (2018) Chemical composition and herbicidal action of essential oil from Tagetes erecta L. leaves. Ind Crops Prod 126:129–134. https://doi.org/10.1016/j.indcrop.2018.10.013

    Article  CAS  Google Scholar 

  6. Mourtzinos I, Kalogeropoulos N, Papadakis S et al (2007) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci. https://doi.org/10.1111/j.1750-3841.2007.00609.x

    Article  Google Scholar 

  7. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–53. https://doi.org/10.1111/1541-4337.12006

    Article  CAS  Google Scholar 

  8. Biduski B, Kringel DH, Colussi R et al (2019) Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation. Int J Biol Macromol 132:300–307. https://doi.org/10.1016/j.ijbiomac.2019.03.203

    Article  CAS  PubMed  Google Scholar 

  9. Ferrer MCC, Dastgheyb S, Hickok NJ et al (2014) Designing nanogel carriers for antibacterial applications. Acta Biomater 10:2105–2111. https://doi.org/10.1016/j.actbio.2014.01.009

    Article  CAS  PubMed Central  Google Scholar 

  10. Newkome GR, Shreiner CD (2008) Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedures. Polymer 49:1–173. https://doi.org/10.1016/j.polymer.2007.10.021

    Article  CAS  Google Scholar 

  11. Huang D, Wu D (2018) Biodegradable dendrimers for drug delivery. Mater Sci Eng C 90:713–727. https://doi.org/10.1016/j.msec.2018.03.002

    Article  CAS  Google Scholar 

  12. Sherje AP, Jadhav M, Dravyakar BR, Kadam D (2018) Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm 548:707–720. https://doi.org/10.1016/j.ijpharm.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  13. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175. https://doi.org/10.1002/anie.199001381

    Article  Google Scholar 

  14. Lyu Z, Ding L, Huang AY-T, Kao C-L, Peng L (2019) Poly(amidoamine) dendrimers: covalent and supramolecular. Synth Mater Today Chem 13:34–48. https://doi.org/10.1016/j.mtchem.2019.04.004

    Article  CAS  Google Scholar 

  15. Coimbra M, Isacchi B, Bloois LV et al (2011) Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 416:433–442. https://doi.org/10.1016/j.ijpharm.2011.01.056a&lt

    Article  CAS  PubMed  Google Scholar 

  16. Mukherji SP (1995) Ocimum-a cheap source of eugenol. Science reporter, 31, 599. Eugenol-rich Ocimum variety released. In: CSIR NEWS Published by PID CSIR, New Delhi, 45, 256

  17. Talón E, Vargas M, Chiralt A, González-Martínez C (2019) Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT 113:108290. https://doi.org/10.1016/j.lwt.2019.108290

    Article  CAS  Google Scholar 

  18. Gomes D, Pinto JC, Borges C (2003) Determination of hydrazide content in poly(oxadiazole-hydrazide) copolymers by NMR and thermal analysis. Polymer 44:6223–6233. https://doi.org/10.1016/s0032-3861(03)00638-4

    Article  CAS  Google Scholar 

  19. Zhu L, Shi Y, Tu C et al (2010) Construction and application of a pH-sensitive nanoreactor via a double-hydrophilic multiarm hyperbranched polymer. Langmuir 26:8875–8881. https://doi.org/10.1021/la9046275

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Lin Q, Gao Y et al (2007) Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohydr Polym 67:313–318. https://doi.org/10.1016/j.carbpol.2006.05.024

    Article  CAS  Google Scholar 

  21. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990. https://doi.org/10.1046/j.1365-2672.1999.00780.x

    Article  CAS  PubMed  Google Scholar 

  22. Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr Polym 80:197–207. https://doi.org/10.1016/j.carbpol.2009.11.013

    Article  CAS  Google Scholar 

  23. Liu X, Liu J, Luo Y (2012) Facile glycosylation of dendrimers for eliciting specific cell–material interactions. Polym Chem 3:310–313. https://doi.org/10.1039/c1py00404b

    Article  CAS  Google Scholar 

  24. Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym 76:30–35. https://doi.org/10.1016/j.carbpol.2008.09.018

    Article  CAS  Google Scholar 

  25. Shingel KI (2002) Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 337:1445–1451. https://doi.org/10.1016/s0008-6215(02)00209-4

    Article  CAS  PubMed  Google Scholar 

  26. Charles S, Vasanthan N, Kwon D et al (2012) Surface modification of poly(amidoamine) (PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett 53:6670–6675. https://doi.org/10.1016/j.tetlet.2012.09.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gajendiran M, Gopi V, Elangovan V et al (2013) Isoniazid loaded core shell nanoparticles derived from PLGA–PEG–PLGA tri-block copolymers: in vitro and in vivo drug release. Colloids Surf B 104:107–115. https://doi.org/10.1016/j.colsurfb.2012.12.008

    Article  CAS  Google Scholar 

  28. Zhao D, Ong S-M, Yue Z et al (2008) Dendrimer hydrazides as multivalent transient inter-cellular linkers. Biomaterials 29:3693–3702. https://doi.org/10.1016/j.biomaterials.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  29. Gomes C, Moreira RG, Castell-Perez E (2011) Poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci. https://doi.org/10.1111/j.1750-3841.2010.01985.x

    Article  PubMed  Google Scholar 

  30. Siddiqui NN, Aman A, Silipo A et al (2014) Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99:331–338. https://doi.org/10.1016/j.carbpol.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Shan D, Mu S (2007) A promising copolymer of aniline and m-aminophenol: chemical preparation, novel electric properties and characterization. Polymer 48:1269–1275. https://doi.org/10.1016/j.polymer.2006.12.021

    Article  CAS  Google Scholar 

  32. Schmidt-Rohr K, Kulik AS, Beckham HW et al (1994) Molecular nature of the.beta. relaxation in poly(methyl methacrylate) investigated by multidimensional NMR. Macromolecules 27:4733–4745. https://doi.org/10.1021/ma00095a014

    Article  CAS  Google Scholar 

  33. Wang K-R, An H-W, Rong R-X et al (2014) Synthesis of biocompatible glycodendrimer based on fluorescent perylene bisimides and its bioimaging. Macromol Rapid Commun 35:727–734. https://doi.org/10.1002/marc.201300916

    Article  CAS  PubMed  Google Scholar 

  34. Frechet J (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715. https://doi.org/10.1126/science.8134834

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira EFD, Paula HC, Paula RCD (2014) Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B 113:146–151. https://doi.org/10.1016/j.colsurfb.2013.08.038

    Article  CAS  Google Scholar 

  36. Chung H-J, Lim S-T (2003) Physical aging of glassy normal and waxy rice starches: effect of aging temperature on glass transition and enthalpy relaxation. Carbohydr Polym 53:205–211. https://doi.org/10.1016/s0144-8617(03)00077-8

    Article  CAS  Google Scholar 

  37. Icoz DZ, Moraru CI, Kokini JL (2005) Polymer–polymer interactions in dextran systems using thermal analysis. Carbohydr Polym 62:120–129. https://doi.org/10.1016/j.carbpol.2005.07.012

    Article  CAS  Google Scholar 

  38. Karpagam S, Guhanathan S (2014) Phosphorus based indole and imidazole functionalized hyperbranched polyester as antimicrobial surface coating materials. Prog Org Coat 77:1901–1910. https://doi.org/10.1016/j.porgcoat.2014.06.022

    Article  CAS  Google Scholar 

  39. Azmeera V, Adhikary P, Krishnamoorthi S (2012) Synthesis and characterization of graft copolymer of dextran and 2-acrylamido-2-methylpropane sulphonic acid. Int J Carbohydr Chem 2012:1–7. https://doi.org/10.1155/2012/209085

    Article  CAS  Google Scholar 

  40. Chen H, Zhang Y, Zhong Q (2015) Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. J Food Eng 144:93. https://doi.org/10.1016/j.jfoodeng.2014.07.021

    Article  CAS  Google Scholar 

  41. Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym 96(2):578. https://doi.org/10.1016/j.carbpol.2012.08.117

    Article  CAS  PubMed  Google Scholar 

  42. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93. https://doi.org/10.1016/j.lwt.2012.11.011

    Article  CAS  Google Scholar 

  43. Kürekci C, Yipel M, Önen SP (2016) Investigation of the effectiveness of some plant compounds and essential oils of corymbia citriodora against foodborne pathogens. Turk J Agric Food Sci Technol 4:968. https://doi.org/10.24925/turjaf.v4i11.968-972.853

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Hatay Mustafa Kemal University [Scientific Research Project Unit (BAP), (9980)] for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celile Demirbilek Bucak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 334 kb)

Supplementary material 2 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucak, C.D., Kürekci, C. & Dinç, C.Ö. Carrying system formula for eugenol encapsulation: glycodendritic polyamine dextran-G2.5, synthesis and in vitro antibacterial activity. Polym. Bull. 78, 601–620 (2021). https://doi.org/10.1007/s00289-020-03125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03125-3

Keywords

Navigation