Skip to main content
Log in

Effects of dioctyl phthalate on the properties of poly(vinyl chloride)/organically modified montmorillonite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of dioctyl phthalate (DOP) loading on morphology and thermal and mechanical properties of the poly(vinyl chloride)/organically modified montmorillonite/DOP (PVC/O-MMT/DOP) nanocomposites are studied in this paper. Results of transmission electron microscope (TEM) indicate that O-MMT is partially intercalated and exfoliated in all PVC/O-MMT/DOP nanocomposites. It shows that the addition of DOP has no obvious influence on the dispersion of O-MMT in the PVC/O-MMT/DOP nanocomposites. Young’s modulus and tensile strength of the PVC/O-MMT/DOP nanocomposites are significantly decreased as the amount of DOP is increased. The thermal degradation onset temperature and glass transition temperature (Tg) of the PVC/O-MMT/DOP nanocomposites are decreased as the amount of DOP is increased. On the other hand, the elongation at break of the PVC/O-MMT/DOP nanocomposites is increased as the amount of DOP is increased. Also, the first thermal degradation weight loss (ΔY) of the PVC/O-MMT/DOP nanocomposites is increased as the amount of DOP is increased. While increasing DOP loading, the PVC/O-MMT/DOP nanocomposites change from a rigid product to a semirigid product and finally into a flexible product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zheng X, Gilbert M (2011) An Investigation into the thermal stability of PVC/montmorillonite composites. J Vinyl Addit Technol 17:77–84

    Article  CAS  Google Scholar 

  2. Wan CY, Qiao XY, Zhang Y, Zhang YX (2003) Effect of different clay treatment on morphology and mechanical properties of PVC clay nanocomposites. Polym Test 22:453–461

    Article  CAS  Google Scholar 

  3. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085

    Article  CAS  Google Scholar 

  4. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1996) Microstructural evolution of melt intercalated polymer—organically modified layered silicates nanocomposites. Chem Mater 8:2628–2635

    Article  CAS  Google Scholar 

  5. Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci Part B Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  6. Imanishi H, Yamaguchi T, Fukuda N (2000) Improvement of impact resistant property of poly(vinyl chloridel filled with calcium carbonate. Jpn J Polym Sci Technol 57:590–595

    CAS  Google Scholar 

  7. Wan CY, Zhang Y, Zhang YX (2004) Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated PVC–montmorillonite composites. Polym Test 23:299–306

    Article  CAS  Google Scholar 

  8. Wang DY, Parlow D, Yao Q, Wilkie CA (2001) PVC–clay nanocomposites: preparation, thermal and mechanical properties. J Vinyl Addit Technol 7:203–213

    Article  CAS  Google Scholar 

  9. Wang DY, Parlow D, Yao Q, Wilkie CA (2002) Melt blending preparation of PVC–sodium clay nanocomposites. J Vinyl Addit Technol 8:139–150

    Article  CAS  Google Scholar 

  10. da Silva MA, Vieira MGA, Maçumoto ACG, Beppu MM (2011) Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym Test 30:478–484

    Article  Google Scholar 

  11. Comeaux EJ, Chen CH, Collier JR, Wesson RD (1994) Fusion study of polyvinyl chloride (PVC): relation of Processing time and processing temperature to the degree of fusion. Polym Bull 6:701–708

    Article  Google Scholar 

  12. Chen CH, Wesson RD, Collier JR, Lo YW (1995) Studies of rigid poly(vinyl chloride) (PVC) compounds. I. Morphological characteristics of poly(vinyl chloride)/chlorinated polyethylene (PVC/CPE) blends. J Appl Polym Sci 58:1087–1091

    Article  CAS  Google Scholar 

  13. Chen CH, Wesson RD, Collier JR, Lo YW (1995) Studies of rigid poly(vinyl chloride) (PVC) compounds. II. Determination of the fusion level. J Appl Polym Sci 58:1093–1099

    Article  CAS  Google Scholar 

  14. Chen CH, Wesson RD, Collier JR, Lo YW (1995) Studies of rigid poly(vinyl chloride) (PVC) compounds. IV. Fusion characteristics and morphology analyses. J Appl Polym Sci 58:1107–1115

    Article  CAS  Google Scholar 

  15. Chen CH, Lo YW (1999) Influences of chlorinated polyethylene and oxidized polyethylene on the fusion of rigid poly(vinyl chloride) compounds. J Appl Polym Sci 74:699–705

    Article  CAS  Google Scholar 

  16. Chen CH, Lo YW, Mao CF (2001) Study of fusion percolation thresholds of rigid PVC compounds. J Appl Polym Sci 81:3022–3029

    Article  CAS  Google Scholar 

  17. Chen CH, Teng CC, Yang CH (2005) Preparation and characterization of rigid poly(vinyl chloride)/MMT nanocomposites. J Polym Sci Part B Polym Phys 43:1465–1474

    Article  CAS  Google Scholar 

  18. Chen CH, Teng CC, Tsai MS, Yen FS (2006) Preparation and characterization of rigid poly(vinyl chloride)/MMT nanocomposites. II. XRD, morphological and mechanical characteristics. J Polym Sci Part B Polym Phys 44:2145–2154

    Article  CAS  Google Scholar 

  19. Makherjee AK, Gupta A (1981) Structure and dehydrochlorination of poly(vinyl chloride). J Macromol Sci Part C Polym Rev 20:309–331

    Article  Google Scholar 

  20. Liebman SA, Reuwer JF, Gollatz KA, Nauman CD (1971) Thermal decomposition of poly(vinyl chloride) and chlorinated poly(vinyl chloride). I. ESR and TGA studies. J Polym Sci Part A Polym Chem 9:1823–1833

    Article  CAS  Google Scholar 

  21. Li B (2000) A study of thermal degradation and decomposition of rigid poly(vinyl chloride) with metal oxides using thermogravimetry and cone calorimetry. Polym Degrad Stab 68:197–204

    Article  CAS  Google Scholar 

  22. Djidjelli H, Martinez-Vega JJ, Farenc J, Benachour D (2002) Effect of wood flour content on the thermal, mechanical and dielectric properties of poly(vinyl chloride). Macromol Mater Eng 287:611–618

    Article  CAS  Google Scholar 

  23. Fried JR (2004) Polymer science and technology, 2nd edn. Taipei, Pearson Education Taiwan Ltd, p 285

    Google Scholar 

  24. Gil N, Negulescu I, Saska M (2006) Evaluation of the effects of biobased plasticizers on the thermal and mechanical properties of poly(vinyl chloride). J Appl Polym Sci 102:1366–1373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support provided by the Ministry of Economics Affairs, R.O.C (Project No. 93-EC-17-A-08-S1-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ho Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Liou, YL., Mao, CF. et al. Effects of dioctyl phthalate on the properties of poly(vinyl chloride)/organically modified montmorillonite nanocomposites. Polym. Bull. 78, 283–294 (2021). https://doi.org/10.1007/s00289-020-03109-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03109-3

Keywords

Navigation