Skip to main content
Log in

Adsorption of Ag(I) ions from wastewaters using poly(2-aminothiazole): kinetic and isotherm studies

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, 2-aminothiazole, (2AT), was polymerized with benzoyl peroxide in 1,4-dioxane solution, and adsorption efficiencies of poly(2-aminothiazole), P-2AT, for the Ag(I) ions to remove from the aqueous solutions were investigated. Adsorption experiments were studied at different pH, contact time and initial Ag(I) ion concentration in a batch system. The optimal pH for Ag(I) adsorption onto P-2AT was found to be 5.0, and the maximum adsorption capacity was determined to be 336.98 mg/g for 1200 mg/L Ag(I) solution at 90 min. P-2AT adsorbents were followed up by recycling in multiple adsorption cycles. The results showed that adsorbent can be used several times. Ag(I) ion adsorption performance of the P-2AT was investigated in conjunction with Cu(II) and Zn(II) ions. The selectivity series of ions were found as Ag(I) > Cu(II) > Zn(II). According to the experimental data, the adsorption reaction fitted the pseudo-second-degree kinetic model and the Langmuir isotherm equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lin W, Ronge X, Song L, Huahua Y, Yukun Q, Kecheng L, Jinhua F, Rongfeng L, Pengcheng L (2010) Recovery of silver(I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582

    Google Scholar 

  2. Mohan D, Chander S (2000) Single component and multi-component adsorption of metal ions by activated carbons. Colloids Surf A Physicochem Eng Asp 177:183–196

    Google Scholar 

  3. Jeon C, Park KH (2005) Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Res 39:3938–3944

    CAS  PubMed  Google Scholar 

  4. Lin SH, Lai SL, Leu HG (2000) Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process. J Hazard Mater B76:139–153

    Google Scholar 

  5. Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mater B94:291–303

    Google Scholar 

  6. Chen JP, Lim LL (2002) Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49:363–370

    CAS  PubMed  Google Scholar 

  7. Ghassabzadeh H, Mohadespour A, Torab-Mostaedi M, Zaheri P, Maragheh MG, Taheri H (2010) Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. J Hazard Mater 177:950–955

    CAS  PubMed  Google Scholar 

  8. Akgül M, Karabakan A, Acar O, Yürüm Y (2006) Removal of silver(I) from aqueous solutions with clinoptilolite. Micropor Mesopor Mater 94:99–104

    Google Scholar 

  9. Hongyan H, Haijia S, Tianwei T (2009) Adsorption of Ag+ by a surface molecular-imprinted biosorbent. Chem Eng J 150:139–144

    Google Scholar 

  10. Mack C, Wilhelmi BJ, Duncan R, Burgess JE (2007) Research review paper: biosorption of precious metals. Biotechnol Adv 25:264–271

    CAS  PubMed  Google Scholar 

  11. Jeon C (2017) Adsorption and recovery of immobilized coffee ground beads for silver ions from industrial wastewater. J Ind Eng Chem 53:261–267

    CAS  Google Scholar 

  12. Gill GA, Santschi PH, Liang-Saw W, Degui T (2002) Silver concentration in Colorado, USA, Watersheds using improved methodology. Environ Toxicol Chem 21:2040–2051

    PubMed  Google Scholar 

  13. Soylak M, Erdogan ND (2006) Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. J Hazard Mater 137:1035–1041

    CAS  PubMed  Google Scholar 

  14. Uluözlu OD, Tüzen M, Mendil D, Soylak M (2010) Coprecipitation of trace elements with Ni2+/2-nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry. J Hazard Mater 176:1032–1037

    PubMed  Google Scholar 

  15. Pillai KC, Chung SJ, Moon II-S (2008) Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process. Chemosphere 73:1505–1511

    CAS  Google Scholar 

  16. Borowiak-Resterna A, Cierpiszewski R, Prochaska K (2010) Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants. J Hazard Mater 179:828–833

    CAS  PubMed  Google Scholar 

  17. Sonune A, Grate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    CAS  Google Scholar 

  18. Chaudhari LB, Murthy ZVP (2010) Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. J Hazard Mater 180:309–315

    CAS  PubMed  Google Scholar 

  19. Caprarescu S, Corobea MC, Purcar V, Spataru CI, Ianchis R, Vasilievici G, Vuluga Z (2015) San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis. J Environ Sci 35:27–37

    CAS  Google Scholar 

  20. Caprarescu S, Ianchis R, Radu AL, Sarbu A, Somoghi R, Trica B, Alexandrescu E, Spataru CI, Fierascu RC, Ebrasu DI, Preda S, Atanase LI, Dan D (2017) Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Appl Clay Sci 137:135–142

    Google Scholar 

  21. Caprarescu S, Radu AL, Purcar V, Ianchis R, Sarbu A, Ghiurea M, Nicolae C, Modrogan C, Vaireanu DI, Périchaud A, Ebrasu DI (2015) Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Appl Surf Sci 329:65–75

    CAS  Google Scholar 

  22. Güvenç A, Karabacakoğlu B (2005) Use of electrodialysis to remove silver ions from model solutions and wastewater. Desalination 172:7–17

    Google Scholar 

  23. Kentaro M, Junichii I, Tatsushi M, Hideo Y (2010) Straight-chained thermoresponsive polymer with high chelating group content for heavy metal ion recovery. Sep Purif Technol 75:69–75

    Google Scholar 

  24. Tokalioglu S, Yilmaz V, Kartal S, Delibas A, Soykan C (2009) Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples. J Hazard Mater 169:593–598

    CAS  PubMed  Google Scholar 

  25. Qun H, Zheng H, Yin J, Xijun C, Zhifeng T, Lina Z (2010) Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination. J Hazard Mater 175:710–714

    Google Scholar 

  26. Zhifeng T, Qun H, Xijun C, Zheng H, Ru G, Lina Z, Zhenhua L (2009) 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions. Anal Chim Acta 649:252–257

    Google Scholar 

  27. Silva EL, Martins AO, Valentini A, Favere VT, Carasek E (2004) Application of silica gel organofunctionalized with 3(1-imidazolyl)propyl in an on-line preconcentration system for the determination of copper by FAAS. Talanta 64:181–189

    CAS  PubMed  Google Scholar 

  28. Xiaojun Z, Yuemei C, Xijun C, Xiangbing Z, Zheng H, Dong Y (2009) Silica gel surface modified with sulfanilamide for selective solid-phase extraction of Cu(II), Zn(II) and Ni(II). Int J Environ Anal Chem 89:1043–1055

    Google Scholar 

  29. Kensuke F, Attinti R, Teruya M, Hiroshi H, Kazumasa U (2007) Adsorption of platinum(IV), palladium(II) and gold(III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50

    Google Scholar 

  30. Ding Z, Frost RL (2004) Study of copper adsorption on montmorillonites using thermal analysis methods. J Colloid Interf Sci 269:296–302

    CAS  Google Scholar 

  31. Gupta VK, Jain CK, Sharma M (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    CAS  PubMed  Google Scholar 

  32. Junsheng L, Yue M, Tongwen X, Guoquan S (2010) Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. J Hazard Mater 178:1021–1029

    Google Scholar 

  33. Buyi L, Fabing S, He-Kuan L, Liyun L, Bien T (2011) Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Micropor Mesopor Mater 138:207–214

    Google Scholar 

  34. Jie D, Han Y, Hu Y, Rongshi C (2010) Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions. Chem Eng J 165:240–249

    Google Scholar 

  35. Jinnan W, Aimin L, Li X, Yang Z (2009) Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal. J Hazard Mater 69:794–800

    Google Scholar 

  36. Filho NLD, do Carmo DR, Rosa AH (2006) An electroanalytical application of 2-aminothiazole-modified silica gel after adsorption and separation of Hg(II) from heavy metals in aqueous solution. Electrochim Acta 52:965–972

    Google Scholar 

  37. Qiang-Feng Y, Ben-Zhi J, Shu-Fen Z, Xin-Bo W, Jin-Zong Y (2008) Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu(II) ions from aqueous solution. Carbohydr Polym 72:326–333

    Google Scholar 

  38. Tsyurupa MP, Davankov VA (2006) Porous structure of hyper-cross-linked polystyrene: state-of-the-art mini-review. React Funct Polym 66:768–779

    CAS  Google Scholar 

  39. William D, Birkinshaw C, Francis T (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Google Scholar 

  40. Bingjun P, Bingcai P, Weiming Z, Lu L, Quanxing Z, Shourong Z (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29

    Google Scholar 

  41. Jianhan H, Kelong H, Suqin L (2009) Tertiary amino groups modified macroporous crosslinked poly(styrene-co-divinylbenzene) and its oxidized adsorbent: synthesis, characterization, and adsorption behavior. J Hazard Mater 162:771–776

    Google Scholar 

  42. Filho NLD (1999) Adsorption and structure of copper(II) complexes on a silica gel surface chemically modified with 2-aminothiazole. Polyhedron 18:2241–2247

    Google Scholar 

  43. Roldan PS, Alcantara IL, Castro GR, Rocha JC (2003) Determination of Cu, Ni, and Zn in fuel ethanol by FAAS after enrichment in column packed with 2-aminothiazole-modified silica gel. Anal Biochem 375:574–577

    CAS  Google Scholar 

  44. Çiftçi H, Testereci HN, Öktem Z (2013) Preconcentration and electroanalysis of silver at Pt electrode modified with poly(2-aminothiazole). Russ J Electrochem 49(12):1160–1164

    Google Scholar 

  45. Bıyıkoğlu M, Çiftçi H (2013) Chemical synthesis and characterization of soluble conducting poly(2-aminothiazole). Polym Bull 70(10):2843–2856

    Google Scholar 

  46. Sarı A, Tüzen M, Çıtak D, Soylak M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148:387–394

    PubMed  Google Scholar 

  47. Alkan M, Karadas M, Doğan M, Demirbas Ö (2005) Adsorption of CTAB onto perlite samples from aqueous solutions. J Colloid Interface Sci 291:309–318

    CAS  PubMed  Google Scholar 

  48. Üçer A, Uyanik A, Aygün ŞF (2006) Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol 47:113–118

    Google Scholar 

  49. Sengil IA, Ozacar M (2009) Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J Hazard Mater 166:1488–1494

    CAS  PubMed  Google Scholar 

  50. Çoruh S, Şenel G, Ergun OS (2010) A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal. J Hazard Mater 180:486–492

    PubMed  Google Scholar 

  51. Ye-Shih H, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    Google Scholar 

  52. Godiyaa CB, Chenga X, Denga G, Lib D, Lua X (2019) Silk fibroin/polyethylenimine functional hydrogel for metal ion adsorption and upcycling utilization. J Env Chem Eng 7:102806–102817

    Google Scholar 

  53. Yanga T, Zhanga L, Zhonga L, Hana X, Donga S, Li Y (2018) Selective adsorption of Ag(I) ions with poly(vinyl alcohol) modified with thiourea (TU–PVA). Hydrometallurgy 175:179–186

    Google Scholar 

  54. Jianhan H, Kelong H, Suqin L, Leong S, Su J, Kean W, Rong X (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168

    Google Scholar 

  55. Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590

    CAS  Google Scholar 

  56. Alkan M, Dogan M (2001) Adsorption of copper(II) onto perlite. J Colloid Interface Sci 243:280–291

    CAS  Google Scholar 

  57. Atia A, Donia A, Yousif A (2005) Comparative study of the recovery of silver(I) from aqueous solutions with different chelating resins derived from glycidyl methacrylate. J Appl Poly Sci 97:806–812

    CAS  Google Scholar 

  58. Yi Y, Wang YT, Liu H (2003) Preparation of new crosslinked chitosan with crownether and their adsorption for silver ion for antibacterial activities. Carbohdr Poly 53:425–430

    CAS  Google Scholar 

  59. Ma J, Shen J, Wang C, Wei Y (2018) Preparation of dual-function chelating resin with high capacity and adjustable adsorption selectivity to variety of heavy metal ions. J Taiw Inst Chem Eng 91:532–538

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Kirikkale University (2016/138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutluhan Bıyıkoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bıyıkoğlu, M., Çiftçi, H. Adsorption of Ag(I) ions from wastewaters using poly(2-aminothiazole): kinetic and isotherm studies. Polym. Bull. 77, 6161–6174 (2020). https://doi.org/10.1007/s00289-019-03073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03073-7

Keywords

Navigation