Skip to main content
Log in

Ni/Pd-catalyzed coordination-insertion copolymerization of ethylene with alkyl acrylate

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Commercially, polyethylene is a highly produced commodity polymer. But due to its hydrophobic nature, it limits its applications, where utility is based on surface properties, such as adhesion, printability, wettability, and miscibility with other polar polymers. Therefore, the presence of a hydrophilic polar functionality is desired to overcome such difficulties. With its high exigency, synthesis of functionalized polyethylene with unique surface properties is now a very challenging task to be accomplished. In this perspective, developments on palladium and nickel (mainly based on ligands containing neutral α-diimine and anionic phosphine–sulfonate derivative)-mediated coordination/insertion copolymerization of ethylene with polar functionalized co-monomers are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

AlA:

Allyl acetate

AMDET:

Acyclic diene metathesis

Ar-BIAN:

Bis(aryl-imino) acenaphthene

BMPO:

Bisphosphine monoxide

BuA:

Butylacrylate

BVE:

Butyl vinyl ether

CA:

Carbonic anhydride

Cp :

Cyclopentadienyl

COD:

1,5-Cyclooctadiene

DMSO:

Dimethyl sulfoxide

DOPPBS:

Di(2-methoxyphenyl) phosphine benzene-2-sulfonic acid

EP:

Ethylene/propylene

HDPE:

High-density polyethylene

MA:

Methyl acrylate

MAO:

Methylaluminoxane

MMA:

Methyl methacrylate

NMR:

Nuclear magnetic resonance

PE:

Polyethylene

PEAA:

Polymer of ethylene and AA

PPh3 :

Triphenylphosphine

PSO:

Phosphine–sulfonate chelate

ROMP:

Ring-opening metathesis polymerization

SHOP:

Shell higher olefin process

TMEDA:

Tetramethylethylenediamine

VAc:

Vinyl acetate

VF:

Vinyl fluoride

References

  1. Gaikwad SR, Deshmukh SS, Gonnade RG, Rajamohanan PR, Chikkali SH (2015) Insertion copolymerization of difunctional polar vinyl monomers with ethylene. ACS Macro Lett 4:933–937

    CAS  Google Scholar 

  2. Hutley TJ, Ouederni M (2016) Polyolefins: the history and economic impact. In: AlMa’adeed MA-A, Krupa I (eds) Polyolefin compounds and materials: fundamentals and industrial applications. Springer series on polymer and composite materials. Springer, Berlin

    Google Scholar 

  3. Boffa LS, Novak BM (2000) Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chem Rev 100:1479–1493

    CAS  PubMed  Google Scholar 

  4. Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–447

    CAS  Google Scholar 

  5. Baruah U, Gautam A, Saikia M, Borphukan S, Saikia PJ, Baruah SD (2017) Monodisperse copolymer nanosphere assembly by miniemulsion polymerization. Eur Polym J 96:111–118

    CAS  Google Scholar 

  6. Baruah U, Saikia M, Assanvo EF, Borphukan S, Phukan L, Gautam A, Baruah SD (2016) Synthesis and thermal analysis of poly(methyl methacrylate) oligomer functionalized polyethylene block copolymer. Polym Bull 74:2137–2158

    Google Scholar 

  7. Saikia M, Borphukan S, Baruah U, Gautam A, Saikia PJ, Baruah SD (2017) Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study. J Therm Anal Calorim 131:1517–1526

    Google Scholar 

  8. Boaen NK, Hillmyer MA (2005) Post-polymerization functionalization of polyolefins. Chem Soc Rev 34:267–275

    CAS  PubMed  Google Scholar 

  9. Rojas G, Berda EB, Wagener KB (2008) Precision polyolefin structure: modeling polyethylene containing alkyl branches. Polymer 49:2985–2995

    CAS  Google Scholar 

  10. Camm KD, Castro NM, Liu Y, Czechura P, Snelgrove JL, Fogg DE (2007) Tandem ROMP–hydrogenation with a third-generation grubbs catalyst. J Am Chem Soc 129:4168–4169

    CAS  PubMed  Google Scholar 

  11. Leblanc A, Grau E, Broyer JP, Boisson C, Spitz R, Monteil V (2011) Homo- and copolymerizations of (meth)acrylates with olefins (styrene, ethylene) using neutral nickel complexes: a dual radical/catalytic pathway. Macromolecules 44:3293–3301

    CAS  Google Scholar 

  12. Daigle JC, Piche L, Claverie JP (2011) Preparation of functional polyethylenes by catalytic copolymerization. Macromolecules 44:1760–1762

    CAS  Google Scholar 

  13. Carrow BP, Nozaki K (2012) Synthesis of functional polyolefins using cationic bisphosphine monoxide–palladium complexes. J Am Chem Soc 134:8802–8805

    CAS  PubMed  Google Scholar 

  14. Meduri A, Montini T, Ragaini F, Fornasiero P, Zangrando E, Milani B (2013) Palladium-catalyzed ethylene/methyl acrylate cooligomerization: effect of a new nonsymmetric α-diimine. ChemCatChem 5:1170–1183

    CAS  Google Scholar 

  15. Contrella ND, Sampson JR, Jordan RF (2014) Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands. Organometallics 33:3546–3555

    CAS  Google Scholar 

  16. Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A (2014) Dipalladium catalyst for olefin polymerization: Introduction of acrylate units into the main chain of branched polyethylene. Angew Chemie Int Ed 53:9246–9250

    CAS  Google Scholar 

  17. Allen KE, Campos J, Daugulis O, Brookhart M (2015) Living polymerization of ethylene and copolymerization of ethylene/methyl acrylate using “sandwich” diimine palladium catalysts. ACS Catal 5:456–464

    CAS  Google Scholar 

  18. Nuzzo RG, Smolinsky G (1984) Preparation and characterization of functionalized polyethylene surfaces. Macromolecules 17:1013–1019

    CAS  Google Scholar 

  19. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118:267–268

    CAS  Google Scholar 

  20. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)-and Ni(II)-based catalysts for polymerization of ethylene and. alpha.-olefins. J Am Chem Soc 117:6414–6415

    CAS  Google Scholar 

  21. Rhinehart JL, Brown LA, Long BK (2013) A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J Am Chem Soc 135:16316–16319

    CAS  PubMed  Google Scholar 

  22. Meinhard D, Wegner M, Kipiani G, Hearley A, Reuter P, Fischer S, Marti O, Rieger B (2007) New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design. J Am Chem Soc 129:9182–9191

    CAS  PubMed  Google Scholar 

  23. Ionkin AS, Marshall WJ (2004) Ortho-5-methylfuran- and benzofuran-substituted η3-allyl(α-diimine)nickel(II) complexes: syntheses, structural characterization, and the first polymerization results. Organometallics 23:3276–3283

    CAS  Google Scholar 

  24. Schmid M, Eberhardt R, Klinga M, Leskela M, Rieger B (2001) New C2v- and chiral C2-symmetric olefin polymerization catalysts based on nickel(II) and palladium(II) diimine complexes bearing 2,6-diphenyl aniline moieties: synthesis, structural characterization, and first insight into polymerization properties. Organometallics 20:2321–2330

    CAS  Google Scholar 

  25. Camacho DH, Guan Z (2005) Living polymerization of α-olefins at elevated temperatures catalyzed by a highly active and robust cyclophane-based nickel catalyst. Macromolecules 38:2544–2546

    CAS  Google Scholar 

  26. Zanchin G, Bertini F, Vendier L, Ricci G, Lorber C, Leone G (2019) Copolymerization of ethylene with propylene and higher α-olefins catalyzed by (imido)vanadium(iv) dichloride complexes. Polym Chem 10:6200–6216

    CAS  Google Scholar 

  27. Nakano R, Chung LW, Watanabe Y, Okuno Y, Okumura Y, Ito S, Morokuma K, Nozaki K (2016) Elucidating the key role of phosphine–sulfonate ligands in palladium-catalyzed ethylene polymerization: effect of ligand structure on the molecular weight and linearity of polyethylene. Catalysis 6:6101–6113

    CAS  Google Scholar 

  28. Noda S, Nakamura A, Kochi T, Lung WC, Morokuma K, Nozaki K (2009) Mechanistic studies on the formation of linear polyethylene chain catalyzed by palladium phosphine–sulfonate complexes: experiment and theoretical studies. J Am Chem Soc 131:14088–14100

    CAS  PubMed  Google Scholar 

  29. Haras A, Anderson GDW, Michalak A, Rieger B, Ziegler T (2006) Computational insight into catalytic control of poly(ethylene–methyl acrylate) topology. Organometallics 25:4491–4497

    CAS  Google Scholar 

  30. Guironnet D, Caporaso L, Neuwald B, Go I, Cavallo L, Mecking S (2010) Mechanistic insights on acrylate insertion polymerization. J Am Chem Soc 132:4418–4426

    CAS  PubMed  Google Scholar 

  31. Nozaki K, Kusumoto S, Noda S, Kochi T, Chung LW, Morokuma K (2010) Why did incorporation of acrylonitrile to a linear polyethylene become possible? Comparison of phosphine–sulfonate ligand with diphosphine and imine–phenolate ligands in the Pd-catalyzed ethylene/acrylonitrile copolymerization. J Am Chem Soc 132:16030–16042

    CAS  PubMed  Google Scholar 

  32. Kim Y, Jordan RF (2011) Synthesis, structures, and ethylene dimerization reactivity of palladium alkyl complexes that contain a chelating phosphine–trifluoroborate ligand. Organometallics 30:4250–4256

    CAS  Google Scholar 

  33. Gott AL, Piers WE, Dutton JL, Mcdonald R, Parvez M (2011) Dimerization of ethylene by palladium complexes containing bidentate trifluoroborate-functionalized phosphine ligands. Organometallics 30:4236–4249

    CAS  Google Scholar 

  34. Liu W, Malinoski JM, Brookhart M, Hill C, Carolina N (2002) Ethylene polymerization and ethylene/methyl 10-undecenoate copolymerization using nickel(II) and palladium(II) complexes derived from a bulky P, O chelating ligand. Organometallics 21:2836–2838

    CAS  Google Scholar 

  35. Malinoski JM, Brookhart M, Hill C, Carolina N (2003) Polymerization and oligomerization of ethylene by cationic nickel(II) and palladium(II) complexes containing bidentate phenacyldiarylphosphine ligands. Organometallic 22:5324–5335

    CAS  Google Scholar 

  36. Britovsek GJP, Keim W, Mecking S, Sainz D, Wagner T (1993) Hemilabile P, O-ligands in palladium catalysed C-C linkages: codimerization of ethylene and styrene and cooligomerization of ethylene and carbon monoxide. J Chem Soc Chem Commun 1993:1632–1634

    Google Scholar 

  37. Mecking S, Keim W (1996) Cationic palladium η3-allyl complexes with hemilabile p, o-ligands: Synthesis and reactivity, insertion of ethylene into the pd–allyl function. Organometallics 15:2650–2656

    CAS  Google Scholar 

  38. Reisinger CM, Nowack J, Volkmer D, Rieger B (2007) Novel palladium complexes employing mixed phosphine phosphonates and phosphine phosphinates as anionic chelating [P, O] ligands. Dalton Trans 2:272–278

    Google Scholar 

  39. Carrow BP, Nozaki K (2014) Transition-metal-catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules 47:2541–2555

    CAS  Google Scholar 

  40. Brassat I, Keim W, Killat S, Mothrath M, Francesco C, Paolo G (2000) Synthesis and catalytic activity of allyl, methallyl and methyl complexes of nickel(II) and palladium(II) with biphosphine monoxide ligands: oligomerization of ethylene and copolymerization of ethylene and carbon monoxide. J Mol Catal A Chem 157:41–58

    CAS  Google Scholar 

  41. Mitsushige Y, Carrow BP, Ito S, Nozaki K (2016) Ligand-controlled insertion regioselectivity accelerates copolymerisation of ethylene with methyl acrylate by cationic bisphosphine monoxide–palladium catalysts. Chem Sci 7:737–744

    CAS  PubMed  Google Scholar 

  42. Sui X, Dai S, Chen C (2015) Ethylene polymerization and copolymerization with polar monomers by cationic phosphine phosphonic amide palladium complexes. ACS Catal 5:5932–5937

    CAS  Google Scholar 

  43. Zhang Y, Cao Y, Leng X, Chen C, Huang Z (2014) Cationic palladium (II) complexes of phosphine–sulfonamide ligands: synthesis, characterization, and catalytic ethylene oligomerization. Organometallics 33:3738–3745

    CAS  Google Scholar 

  44. Schneider MJ, Schafer R, Mühaupt R (1997) Aminofunctional linear low density polyethylene via metallocene-catalysed ethene copolymerization with N,N-bis (trimethylsilyl)-1-amino-10-undecene. Polymer 38:2455–2459

    CAS  Google Scholar 

  45. Purgeti MD, Vogl O (1988) Functional polymers: polymerization of ω-alkenoate derivatives. J Polym Sci Part A Polym Chem 26:677–700

    Google Scholar 

  46. Kesti MR, Coates GW, Waymouth RM (1992) Homogeneous Ziegler–Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes. J Am Chem Soc 114:9679–9680

    CAS  Google Scholar 

  47. Clark KJ (1970) Olefin copolymers containing polar groups and process for their preparation. US Patent 3949277

  48. Langer A, Haynes R (1973) Copolymerization of alpha olefins with sterically hindered alkenyl amines using ziegler catalysts. US Patent 3755279

  49. Rix FC, Brookhart M (1995) Energetics of migratory insertion reactions in Pd(II) acyl ethylene, alkyl ethylene, and alkyl carbonyl complexes. J Am Chem Soc 117:1137–1138

    CAS  Google Scholar 

  50. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Neutral, single-component nickel(II) polyolefin catalysts that tolerate heteroatoms. Science 287:460–462

    CAS  PubMed  Google Scholar 

  51. Ascenso R, Ribeiro AFG, Correia SG, Marques MM, Gomes PT, Dias AR, Blais M, Rausch MD, Chien JCW (1999) Polymerization with TMA-protected polar vinyl comonomers. II. Catalyzed by nickel complexes containing α-diimine-type ligands. J Polym Sci Part A Polym Chem 37:2471–2480

    Google Scholar 

  52. Chung TC (2002) Synthesis of functional polyolefin copolymers with graft and block structures. Prog Polym Sci 27:39–85

    CAS  Google Scholar 

  53. Jagur-Grodzinski J (1992) Modification of polymers under heterogeneous conditions. Prog Polym Sci 17:361–415

    CAS  Google Scholar 

  54. Singh RP (1992) Surface grafting onto polypropylene-a survey of recent developments. Prog Polym Sci 17:251–281

    CAS  Google Scholar 

  55. Duchateau J, Lutsen L, Guedens W, Cleij TJ, Vanderzande D (2010) Versatile post-polymerization functionalization of poly(p-phenylene vinylene) copolymers containing carboxylic acid substituents: development of a universal method towards functional conjugated copolymers. Polym Chem 1:1313–1322

    CAS  Google Scholar 

  56. Goldmann AS, Glassner M, Inglis AJ, Kowollik CB (2013) Post-functionalization of polymers via orthogonal ligation chemistry. Macromol Rapid Commun 34:810–849

    CAS  PubMed  Google Scholar 

  57. Zhou H, Plummer CM, Li H, Huang H, Ma P, Li L, Liu L, Chen Y (2019) Regioselective post-functionalization of isotactic polypropylene by amination in the presence of N-hydroxyphthalimide. Polym Chem 10:619–626

    CAS  Google Scholar 

  58. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo-and copolymerization. Chem Rev 100:1169–1204

    CAS  PubMed  Google Scholar 

  59. Chen CL (2018) Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat Rev Chem 2:6–14

    CAS  Google Scholar 

  60. Johnson LK, Dobbs K, Hauptman E, Lonkin A, Ittel S, McCord E, McLain SJ, Yin Z, Wang Y, Brookhart M (2002) Presented at the American Chemical Society Meeting, Orlando, FL

  61. McLain SJ, Sweetman KJ, Johnson LK, McCord EF (2002) Presented at the American Chemical Society Meeting, Orlando, FL

  62. Makovetsky KL, Finkelshtein ES, Bykov VI, Bagdasaryan AK, Goodall BL, Rhodes LF (1998) Method for preparation of copolymers of ethylene/norbornene-type monomers with nickel catalysts. US Patent 5(929):181A

    Google Scholar 

  63. Connor EF, Younkin TR, Henderson JI, Hwang S, Grubbs RH, Roberts WP, Litzau JJ (2002) Linear functionalized polyethylene prepared with highly active neutral Ni(II) complexes. J Polym Sci Part A Polym Chem 40:2842–2854

    CAS  Google Scholar 

  64. Leibfarth FA, Schneider Y, Lynd NA, Schultz A, Moon B, Kramer EJ, Bazan GC, Hawker CW (2010) Ketene functionalized polyethylene: control of cross-link density and material properties. J Am Chem Soc 132:14706–14709

    CAS  PubMed  Google Scholar 

  65. Takeuchi D, Chiba Y, Takano S, Osakada K (2013) Double-decker-type dinuclear nickel catalyst for olefin polymerization: Efficient incorporation of functional co-monomers. Angew Chem 125:12768–12772

    Google Scholar 

  66. Radlauer MR, Buckley AK, Henling LM, Agapie T (2013) Bimetallic coordination insertion polymerization of unprotected polar monomers: copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts. J Am Chem Soc 135:3784–3787

    CAS  PubMed  Google Scholar 

  67. Guo L, Dai S, Sui X, Chen C (2016) Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal 6:428–441

    CAS  Google Scholar 

  68. Zhong L, Li G, Liang G, Gao H, Wu Q (2017) Enhancing thermal stability and living fashion in α-diimine–nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 50:2675–2682

    CAS  Google Scholar 

  69. Cheng H, Su Y, Hu Y, Zhang X, Cai Z (2018) Ethylene polymerization and copolymerization with polar monomers using nickel complexes bearing anilinobenzoic acid methyl ester ligand. Polymers 10:754–763

    PubMed Central  Google Scholar 

  70. Xia J, Zhang Y, Zhang J, Jian Z (2019) High-performance neutral phosphine-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers. Organometallics 38:1118–1126

    CAS  Google Scholar 

  71. Gao J, Yang B, Chen C (2019) Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. J Catal 369:233–238

    CAS  Google Scholar 

  72. Mecking S, Johnson LK, Wang L, Brookhart M (1998) Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J Am Chem Soc 120:888–899

    CAS  Google Scholar 

  73. Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh RI (2002) Palladium catalysed copolymerisation of ethene with alkylacrylates: polar comonomer built into the linear polymer chain. Chem Commun 31:744–745

    Google Scholar 

  74. Hearley AK, Nowack J, Rieger B (2005) New single-site palladium catalysts for the nonalternating copolymerization of ethylene and carbon monoxide. Organometallics 24:2755–2763

    CAS  Google Scholar 

  75. Skupov KM, Marella PR, Simard M, Yap GPA, Allen N, Conner D, Goodall BL, Claverie JP (2007) Palladium aryl sulfonate phosphine catalysts for the copolymerization of acrylates with ethene. Macromol Rapid Commun 28:2033–2038

    CAS  Google Scholar 

  76. Kochi T, Noda S, Yoshimura K, Nozaki K (2007) Formation of linear copolymers of ethylene and acrylonitrile catalyzed by phosphine sulfonate palladium complexe. J Am Chem Soc 129:8948–8949

    CAS  PubMed  Google Scholar 

  77. Weng W, Shen Z, Jordan RF (2007) Copolymerization of ethylene and vinyl fluoride by (phosphine-sulfonate) Pd (Me)(py) catalysts. J Am Chem Soc 129:15450–15451

    CAS  PubMed  Google Scholar 

  78. Borkar S, Newsham DK, Sen A (2008) Copolymerization of ethene with styrene derivatives, vinyl ketone, and vinylcyclohexane using a (phosphine–sulfonate)palladium(II) system: unusual functionality and solvent tolerance. Organometallics 27:3331–3334

    CAS  Google Scholar 

  79. Ito S, Munakata K, Nakamura A, Nozaki K (2009) Copolymerization of vinyl acetate with ethylene by palladium/alkylphosphine–sulfonate catalysts. J Am Chem Soc 131:14606–14607

    CAS  PubMed  Google Scholar 

  80. Shen Z, Jordan RF (2010) Copolymerization of ethylene and vinyl fluoride by (phosphine-bis (arenesulfonate)) PdMe (pyridine) catalysts: insights into inhibition mechanisms. Macromolecules 43:8706–8708

    CAS  Google Scholar 

  81. Rünzi T, Fröhlich D, Mecking S (2010) Direct synthesis of ethylene–acrylic acid copolymers by insertion polymerization. J Am Chem Soc 132:17690–17691

    PubMed  Google Scholar 

  82. Kryuchkov VA, Daigle JC, Skupov KM, Claverie JP, Winnik FM (2010) Amphiphilic polyethylenes leading to surfactant-free thermoresponsive nanoparticles. J Am Chem Soc 132:15573–15579

    CAS  PubMed  Google Scholar 

  83. Ravasio A, Boggioni L, Tritto I (2011) Copolymerization of ethylene with norbornene by neutral aryl phosphine sulfonate palladium catalyst. Macromolecules 44:4180–4186

    CAS  Google Scholar 

  84. Li H, Li L, Marks TJ (2004) Polynuclear olefin polymerization catalysis: proximity and cocatalyst effects lead to significantly increased polyethylene molecular weight and comonomer enchainment level. Angew Chem 116:5045–5048

    Google Scholar 

  85. Dai S, Sui X, Chen C (2015) Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew Chemie Int Ed 54:9948–9953

    CAS  Google Scholar 

  86. Chen Z, Liu W, Daugulis O, Brookhart M (2016) Mechanistic studies of Pd(II)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: Evidence for a β-silyl elimination chain transfer mechanism. J Am Chem Soc 138:16120–16129

    CAS  PubMed  Google Scholar 

  87. Tao W, Akita S, Nakano R, Ito S, Hoshimoto Y, Ogoshi S, Nozaki K (2017) Copolymerisation of ethylene with polar monomers by using palladium catalysts bearing an N-heterocyclic carbene–phosphine oxide bidentate ligand. Chem Commun 53:2630–2633

    CAS  Google Scholar 

  88. Zhai F, Solomon JB, Jordan RF (2017) Copolymerization of ethylene with acrylate monomers by amide-functionalized α-diimine Pd catalysts. Organometallics 36:1873–1879

    CAS  Google Scholar 

  89. Ding L, Cheng H, Li Y, Tanaka R, Shiono T, Cai Z (2018) Efficient ethylene copolymerization with polar monomers using palladium anilinonaphthoquinone catalysts. Polym Chem 9:5476–5482

    CAS  Google Scholar 

  90. Ye J, Mu H, Wang Z, Jian Z (2019) Heteroaryl backbone strategy in bisphosphine monoxide palladium-catalyzed ethylene polymerization and copolymerization with polar monomers. Organometallics 38:2990–2997

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-North East Institute of Science & Technology, Jorhat for his permission to publish the manuscript. UB also wish to thank CSIR for awarding CSIR-Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash J. Saikia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, U., Saikia, P.J. & Baruah, S.D. Ni/Pd-catalyzed coordination-insertion copolymerization of ethylene with alkyl acrylate. Polym. Bull. 77, 6105–6134 (2020). https://doi.org/10.1007/s00289-019-03055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03055-9

Keywords

Navigation