Skip to main content
Log in

Reinforcing agents based on cellulose fibers modified by insertion of end-alkyl groups obtained from pyrolytic bio-oil of sugarcane bagasse

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modification of cellulose fibers is a promissory alternative for the production of new composite materials, but the high hydrophilicity of cellulose limits its use as a reinforcing agent in the making of olefin-based composites. The aim of this research was to develop reinforcing agents based on cellulose fibers modified by insertion of end-alkyl groups from pyrolytic bio-oil (PBO). For that, PBO of sugarcane bagasse was obtained and characterized by several techniques including gas chromatography coupled to mass spectrometry. Later, the surface of cellulose fibers was activated using methylene-bis-isocyanate and modified using acetic acid, formic acid, and PBO. Results show that the modification of cellulose surface is possible by the use of PBO at low temperature obtaining results like to those obtained when organic acids are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar V, Kumari M (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbon Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039

    Article  CAS  Google Scholar 

  2. Ng HM, Sin LT, Bee ST, Tee TT, Tahmat AR (2017) Review of nanocellulose polymer composite characteristics and challenges. Polymer-Plastic Technol Eng 56:687–731. https://doi.org/10.1080/03602559.2016.1233277

    Article  CAS  Google Scholar 

  3. Pappu A, Pickering K, Kumar V (2019) Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly(lactic acid) via injection moulding. Ind Crops Prod 137:260–269. https://doi.org/10.1016/j.indcrop.2019.05.040

    Article  CAS  Google Scholar 

  4. Moshiul AK, Beg MD, Reddy DM, Khan MR, Mina MF (2012) Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Compos Part A Appl Sci Manuf 43:1921–1929. https://doi.org/10.1016/j.compositesa.2012.06.012

    Article  CAS  Google Scholar 

  5. Belgacem RN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos interf 12:41–75. https://doi.org/10.1163/1568554053542188

    Article  CAS  Google Scholar 

  6. Alila S, Boufi S (2009) Removal of organic pollutants from water by modified cellulose fibres. Ind Crops Prod 30:93–104. https://doi.org/10.1016/j.indcrop.2009.02.005

    Article  CAS  Google Scholar 

  7. Alila S, Ferraria AM, Botelho do Rego AM, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydr Polym 77:553–562. https://doi.org/10.1016/j.carbpol.2009.01.028

    Article  CAS  Google Scholar 

  8. Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microbial Technol 43:84–92. https://doi.org/10.1016/j.enzmictec.2007.10.003

    Article  CAS  Google Scholar 

  9. Palencia M, Berrio ME, García-Quintero A, Lerma T (2019) In: Giri T, Ghosh B (eds) Polysacharide-based nano-biocarrier in drug delivery. CRC Press, Boca Raton, Chapter 3, pp 39–62

  10. Jedvert K, Heinze T (2017) Cellulose modification and shaping—a review. J Polym Eng 37:845–860. https://doi.org/10.1515/polyeng-2016-0272

    Article  CAS  Google Scholar 

  11. Hajlane A, Kaddami H, Joffe R (2017) Chemical modification of regenerated cellulose fibers by cellulose nano-crystals: towards hierarchical structure for structural composites reinforcement. Ind Crops Prod 100:41–50. https://doi.org/10.1016/j.indcrop.2017.02.006

    Article  CAS  Google Scholar 

  12. Sultan M, Mahmood K, Nawaz H, Jamil T, Hussain R, Zuber M (2012) Modification of cellulosic fiber with polyurethane acrylate copolymers. Part I Physicochemical properties. Carbohyd Polym 87:397–404. https://doi.org/10.1016/j.carbpol.2011.07.070

    Article  CAS  Google Scholar 

  13. Gustavsson MT, Persson PV, Iversen T, Martinelle M, Hult K, Teeri TT, Brumer H (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromol 6:196–203. https://doi.org/10.1021/bm049588i

    Article  CAS  Google Scholar 

  14. Ramesh S, Shanti R, Morris E (2013) Characterization of conducting cellulose acetate based polymer electrolytes doped with “green” ionic mixture. Carbohyd Polym 91:14–21. https://doi.org/10.1016/j.carbpol.2012.07.061

    Article  CAS  Google Scholar 

  15. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Biores Technol 68:71–77. https://doi.org/10.1016/S0960-8524(98)00086-8

    Article  CAS  Google Scholar 

  16. Stefanidis SD, Kalogiannis KG, Iliopoulou EF et al (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  CAS  Google Scholar 

  17. Afanasjeva N, Castillo LC, Sinisterra JC (2017) Lignocellulosic biomass. Part I: biomass transformation. J Sci Tecnol Appl 3:27–43. https://doi.org/10.34294/j.jsta.17.3.22

    Article  Google Scholar 

  18. Kumar A, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crops Prod 95:704–717. https://doi.org/10.1016/j.indcrop.2016.11.039

    Article  CAS  Google Scholar 

  19. Sohaib Q, Muhammad A, Younas M (2017) Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources Part A Recovery Util Environ Effects 39:184–190. https://doi.org/10.1080/15567036.2017.1363830

    Article  CAS  Google Scholar 

  20. Durange JA, Santos MR, Pereira MM et al (2013) Physicochemical properties of pyrolysis bio-oil from sugarcane straw and sugarcane in natura. J Biomater Nanobiotechnol 4:10–19. https://doi.org/10.4236/jbnb.2013.42A002

    Article  CAS  Google Scholar 

  21. Palencia M (2017) Surface free energy of solids by contact angle measurements. J Sci Technol Appl 2:84–93. https://doi.org/10.34294/j.jsta.17.2.17

    Article  Google Scholar 

  22. García-Pérez M, Chaala A, Roy C (2002) Vacuum pyrolysis of sugarcane bagasse. J Anal Appl Pyrol 65:111–136. https://doi.org/10.1016/S0165-2370(01)00184-X

    Article  Google Scholar 

  23. Restrepo D, García A, Combatt E (2018) Infrared spectroscopy in the analysis of cation exchange capacity of soils—A review. J Sci Technol Appl 5:55–65. https://doi.org/10.34294/j.jsta.18.5.35

    Article  Google Scholar 

  24. Palencia M, Lerma T, Berrio ME (2017) Thin-film composite by in situ polymerization of 4-chloromethyl styrene functionalized with N-methyl-D-glucamine in pore-type microreactors. J Sci Technol Appl 3:66–76. https://doi.org/10.34294/j.jsta.17.3.25

    Article  Google Scholar 

  25. Palencia M (2018) Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions. J Adv Res 14:53–62. https://doi.org/10.1016/j.jare.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arbelaez N, Lerma T, Córdoba A (2017) Modification of membranes by insertion of short-chain alcohols on reactive porous substrates: effect of chain length on the surface free energy. J Sci Technol Appl 2:75–83. https://doi.org/10.34294/j.jsta.17.2.16

    Article  Google Scholar 

  27. Sardo H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick J (2015) Synthesis of polyurethanes using organocatalysis: a perspective. Macromol 48:3153–3165. https://doi.org/10.1021/acs.macromol.5b00384

    Article  CAS  Google Scholar 

  28. Wiley J, Atalla R (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129. https://doi.org/10.1016/0008-6215(87)80306-3

    Article  CAS  Google Scholar 

  29. Rahman R, Hamdan S, Ngaini ZB et al (2018) Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties. Polym Bull. https://doi.org/10.1007/s00289-018-2598-1

    Article  Google Scholar 

  30. Miléo PC, Oliveira MF, Luz SM et al (2016) Thermal and chemical characterization of sugarcane bagasse cellulose/lignin-reinforced composites. Polym Bull 73:3163. https://doi.org/10.1007/s00289-016-1647-x

    Article  CAS  Google Scholar 

  31. Gaan S, Rupper P, Salimova V et al (2009) Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: Effect of alkyl substituent on nitrogen atom. Polym Degrad Stabil 94:1125–1134. https://doi.org/10.1016/j.polymdegradstab.2009.03.017

    Article  CAS  Google Scholar 

  32. Loof D, Hiller M, Oschkinat H, Koschek K (2016) Quantitative and qualitative analysis of surface modified cellulose utilizing TGA-MS. Materials (Basel, Switzerland) 9(6):415. https://doi.org/10.3390/ma9060415

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thanks to Universidad del Valle by funds supplied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Palencia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palencia, M., Mora, M.A., Lerma, T.A. et al. Reinforcing agents based on cellulose fibers modified by insertion of end-alkyl groups obtained from pyrolytic bio-oil of sugarcane bagasse. Polym. Bull. 77, 5711–5724 (2020). https://doi.org/10.1007/s00289-019-03050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03050-0

Keywords

Navigation