Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review

Abstract

Recently, natural health products as alternatives for synthetic/chemical substances have become a growing area of interest. Plant-derived essential oils or oils (E/Os) with a wide range of bioactivities such as anticancer, antibacterial, antifungal, and antioxidant activities are widely used among natural materials. Furthermore, nanofibers (NFs) with distinct properties, including large surface area, many available ingredients for preparation, and various preparation methods have attracted much attention. The present systematic review is an attempt to collect and document the recent studies from 01.01.2013 to 31.12.2018, indicating the loading of E/O in electrospun NFs. First, a summary of the electrospinning process and applications of electrospun NFs in medicine were given. Then, the three manners, which have been introduced for preparing E/O-loaded NFs so far, were described. Moreover, the main techniques for characterization of such NFs, e.g., evaluation of size and morphology, determination of the loaded amount of E/O in NFs, and investigating their release behavior, were explained.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Definition of Nanotechnology (2019) Iranian nano organization. http://nano.ir/page/1/561/12

  2. 2.

    Shirkhanloo H, Osanloo M, Ghazaghi M, Hassani H (2017) Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls. Atmos Pollut Res 8(2):359–365

    Google Scholar 

  3. 3.

    Osanloo M, Amini SM, Sedaghat MM, Amani A (2019) Larvicidal activity of chemically synthesized silver nanoparticles against Anopheles stephensi. J Pharm Negat Res 10(1):69–72

    CAS  Google Scholar 

  4. 4.

    Osanloo M, Sereshti H, Sedaghat MM, Amani A (2018) Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int 25(7):6466–6473

    CAS  PubMed  Google Scholar 

  5. 5.

    Osanloo M, Sedaghat MM, Sereshti H, Rahmani M, Saeedi Landi F, Amani A (2019) Chitosan nanocapsules of tarragon essential oil with low cytotoxicity and long-lasting activity as a green nano-larvicide. J Nanostruct 9(4):723–735

    CAS  Google Scholar 

  6. 6.

    Osanloo M, Sedaghat MM, Sereshti H, Amani A (2019) Nano-encapsulated tarragon (Artemisia dracunculus) essential oil as a sustained release nano-larvicide. J Contemp Med Sci 5(2):82–89

    CAS  Google Scholar 

  7. 7.

    Osanloo M, Assadpour S, Mehravaran A, Abastabar M, Akhtari J (2018) Niosome-loaded antifungal drugs as an effective nanocarrier system: a mini review. Curr Med Mycol 4(4):31–36

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Firoozi S, Amani A, Derakhshan MA, Ghanbari H (2016) Artificial neural networks modeling of electrospun polyurethane nanofibers from chloroform/methanol solution. J Nano Res 41:18–30

    CAS  Google Scholar 

  9. 9.

    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    CAS  Google Scholar 

  10. 10.

    Peng Y, Dong Y, Fan H, Chen P, Li Z, Jiang Q (2013) Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination 316:53–66

    CAS  Google Scholar 

  11. 11.

    Yongquan D, Ming W, Lin C, Mingjun L (2012) Preparation, characterization of P (VDF-HFP)/[bmim] BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination 295:53–60

    Google Scholar 

  12. 12.

    Zhang Y, Feng Y, Huang Z, Ramakrishna S, Lim C (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17(3):901–908

    CAS  Google Scholar 

  13. 13.

    Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971

    CAS  Google Scholar 

  14. 14.

    Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7(10):3192–3222

    CAS  Google Scholar 

  15. 15.

    Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139

    CAS  Google Scholar 

  16. 16.

    Zhang W, Ronca S, Mele E (2017) Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 7(2):42

    PubMed Central  Google Scholar 

  17. 17.

    Almetwally AA, El-Sakhawy M, Elshakankery M, Kasem M (2017) Technology of nano-fibers: production techniques and properties-critical review. J Text Assoc 78:5–14

    Google Scholar 

  18. 18.

    Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) Review of research on template methods in preparation of nanomaterials. J Nanomater 2016

  19. 19.

    Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):13403

    PubMed  Google Scholar 

  20. 20.

    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    CAS  Google Scholar 

  21. 21.

    Quirós J, Boltes K, Rosal R (2016) Bioactive applications for electrospun fibers. Polym Rev 56(4):631–667

    Google Scholar 

  22. 22.

    Ulubayram K, Calamak S, Shahbazi R, Eroglu I (2015) Nanofibers based antibacterial drug design, delivery and applications. Curr Pharm Des 21(15):1930–1943

    CAS  PubMed  Google Scholar 

  23. 23.

    Casanova MR, Reis RL, Martins A, Neves NMJOTEN, Scaffolding-Related Developments, Translation (2018) The use of electrospinning technique on osteochondral tissue engineering. Adv Exp Med Biol 1058:247–263

    CAS  PubMed  Google Scholar 

  24. 24.

    Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456(1):125–134

    CAS  PubMed  Google Scholar 

  25. 25.

    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433

    CAS  PubMed  Google Scholar 

  27. 27.

    Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466

    CAS  Google Scholar 

  28. 28.

    Matabola K, Moutloali R (2013) The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. J Mater Sci 48(16):5475–5482

    CAS  Google Scholar 

  29. 29.

    Wang T, Kumar S (2006) Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 102(2):1023–1029

    CAS  Google Scholar 

  30. 30.

    Bae H-S, Haider A, Selim KK, Kang D-Y, Kim E-J, Kang I-K (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20(7):158

    Google Scholar 

  31. 31.

    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VM (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013

  32. 32.

    Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47(3):1109–1117

    CAS  Google Scholar 

  33. 33.

    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27(3):504–509

    CAS  Google Scholar 

  34. 34.

    Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release 81(1–2):57–64

    CAS  Google Scholar 

  35. 35.

    Lin S, Wang R-Z, Yi Y, Wang Z, Hao L-M, Wu J-H, Hu G-H, He H (2014) Facile and green fabrication of electrospun poly (vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles. Int J Nanomed 9:3937–3947

    Google Scholar 

  36. 36.

    Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59(4–5):249–262

    CAS  PubMed  Google Scholar 

  37. 37.

    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res A 60(4):613–621

    CAS  Google Scholar 

  38. 38.

    Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. small 5(10):1195–1206

    CAS  PubMed  Google Scholar 

  39. 39.

    Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 39(3):125–131

    CAS  PubMed  Google Scholar 

  40. 40.

    Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188

    CAS  Google Scholar 

  41. 41.

    Araujo J, Martins A, Leonor I, Pinho ED, Reis R, Neves N (2008) Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym Ed 19(10):1261–1278

    CAS  PubMed  Google Scholar 

  42. 42.

    da Silva MA, Crawford A, Mundy J, Martins A, Araújo JV, Hatton PV, Reis RL, Neves NM (2008) Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Eng Part A 15(2):377–385

    Google Scholar 

  43. 43.

    Rezvani Z, Venugopal JR, Urbanska AM, Mills DK, Ramakrishna S, Mozafari M (2016) A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends. Nanomedicine 12(7):2181–2200

    CAS  PubMed  Google Scholar 

  44. 44.

    Gallant-Behm CL, Yin HQ, Liu S, Heggers JP, Langford RE, Olson ME, Hart DA, Burrell RE (2005) Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regen 13(4):412–421

    PubMed  Google Scholar 

  45. 45.

    Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen 12(3):288–294

    PubMed  Google Scholar 

  46. 46.

    Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188

    Google Scholar 

  47. 47.

    Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679

    PubMed  Google Scholar 

  48. 48.

    Sohrabi A, Shaibani P, Etayash H, Kaur K, Thundat T (2013) Sustained drug release and antibacterial activity of ampicillin incorporated poly (methyl methacrylate)–nylon6 core/shell nanofibers. Polymer 54(11):2699–2705

    CAS  Google Scholar 

  49. 49.

    Gao Y, Bach Truong Y, Zhu Y, Louis Kyratzis I (2014) Electrospun antibacterial nanofibers: production, activity, and in vivo applications. J Appl Polym 131(18)

  50. 50.

    Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    CAS  PubMed  Google Scholar 

  51. 51.

    Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM (2017) Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud 5(4):611–615

    Google Scholar 

  52. 52.

    Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802

    CAS  PubMed  Google Scholar 

  53. 53.

    Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829

    CAS  Google Scholar 

  54. 54.

    Juteau F, Masotti V, Bessiere JM, Dherbomez M, Viano J (2002) Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73(6):532–535

    CAS  PubMed  Google Scholar 

  55. 55.

    Osanloo M, Sedaghat MM, Esmaeili F, Amani A (2018) Larvicidal activity of essential oil of syzygium aromaticum (Clove) in com-parison with its major constituent, eugenol, against Anopheles stephensi. J Arthropod Borne Dis 12(4):361–369

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Guesmi F, Prasad S, Tyagi AK, Landoulsi A (2017) Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IkappaBalpha kinase, through downregulation of NF-kappaB activation, potentiation of apoptosis and suppression of NF-kappaB-regulated gene expression. Biomed Pharmacother 95:1876–1885

    CAS  PubMed  Google Scholar 

  57. 57.

    Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod 109:214–219

    CAS  Google Scholar 

  58. 58.

    Jamil B, Abbasi R, Abbasi S, Imran M, Khan SU, Ihsan A, Javed S, Bokhari H (2016) Encapsulation of cardamom essential oil in chitosan nano-composites: in vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol 7:1580

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Khan R, Xiangyang S, Ahmad A, Mo X (2018) Electrospinning of crude plant extracts for antibacterial and wound healing applications: a review. SM J Biomed Eng 4(1):1–8

    Google Scholar 

  60. 60.

    Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H, Veisi H (2018) Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol 125:743–750

    PubMed  Google Scholar 

  61. 61.

    Sirc J, Kubinova S, Hobzova R, Stranska D, Kozlik P, Bosakova Z, Marekova D, Holan V, Sykova E, Michalek J (2012) Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int J Nanomed 7:5315–5325

    CAS  Google Scholar 

  62. 62.

    Zhang C, Zhang H (2018) Formation and stability of core-shell nanofibers by electrospinning of gel-like corn oil-in-water emulsions stabilized by gelatin. J Agric Food Chem 66(44):11681–11690

    CAS  PubMed  Google Scholar 

  63. 63.

    Zamani R, Pilehvar-Soltanahmadi Y, Alizadeh E, Zarghami N (2018) Macrophage repolarization using emu oil-based electrospun nanofibers: possible application in regenerative medicine. Artif Cells Nanomed Biotechnol 46(6):1258–1265

    CAS  PubMed  Google Scholar 

  64. 64.

    Lin L, Mao X, Sun Y, Rajivgandhi G, Cui H (2018) Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int J Food Microbiol 292:21–30

    PubMed  Google Scholar 

  65. 65.

    Jalilzadeh-Tabrizi S, Pilehvar-Soltanahmadi Y, Alizadeh E, Alipour S, Dadashpour M, Nejati-Koshki K, Zarghami N (2018) A biomimetic emu oil-blended electrospun nanofibrous mat for maintaining stemness of adipose tissue-derived stem cells. Biopreserv Biobank 16(2):66–76

    CAS  PubMed  Google Scholar 

  66. 66.

    Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H (2018) Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res A 106(4):1092–1103

    CAS  PubMed  Google Scholar 

  67. 67.

    Chao CY, Mani MP, Jaganathan SK (2018) Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS ONE 13(10):1–17

    Google Scholar 

  68. 68.

    Ayyar M, Mani MP, Jaganathan SK, Rathanasamy R (2018) Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. Biomed Tech Berl 63(3):245–253

    CAS  PubMed  Google Scholar 

  69. 69.

    Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, Darabi M, Rahmati-Yamchi M, Zarghami N (2017) Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 357(2):192–201

    CAS  PubMed  Google Scholar 

  70. 70.

    Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, Zarghami N (2017) Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 43(12):1978–1988

    CAS  PubMed  Google Scholar 

  71. 71.

    Liakos IL, Holban AM, Carzino R, Lauciello S, Grumezescu AM (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials 7(4):1–10

    Google Scholar 

  72. 72.

    Ayyar M, Mani MP, Jaganathan SK, Rathinasamy R, Khudzari AZ, Krishnasamy NP (2017) Surface, thermal and hemocompatible properties of novel single stage electrospun nanocomposites comprising polyurethane blended with bio oilTM. An Acad Bras Cienc 89(3 Suppl):2411–2422

    CAS  PubMed  Google Scholar 

  73. 73.

    Rieger KA, Birch NP, Schiffman JD (2016) Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation. Carbohydr Polym 139:131–138

    CAS  PubMed  Google Scholar 

  74. 74.

    Fazili A, Gholami S, Minaie Zangi B, Seyedjafari E, Gholami M (2016) In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun poly-l-lactide acid scaffolds Coated with Matricaria chamomilla L. Oil. Cell J 18(3):310–321

    PubMed  Google Scholar 

  75. 75.

    Bonan RF, Bonan PR, Batista AU, Sampaio FC, Albuquerque AJ, Moraes MC, Mattoso LH, Glenn GM, Medeiros ES, Oliveira JE (2015) In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377

    CAS  Google Scholar 

  76. 76.

    Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568

    CAS  PubMed  Google Scholar 

  77. 77.

    Amna T, Hassan MS, Yang J, Khil MS, Song KD, Oh JD, Hwang I (2014) Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications. Int J Nanomed 9:891–898

    Google Scholar 

  78. 78.

    Kim JR, Kim SH (2017) Eco-friendly acaricidal effects of nylon 66 nanofibers via grafted clove bud oil-loaded capsules on house dust mites. Nanomaterials 7(7):1–14

    Google Scholar 

  79. 79.

    Ge L, Zhao Y-s, Mo T, Li J-r, Li P (2012) Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26(1):188–193

    CAS  Google Scholar 

  80. 80.

    Lin L, Dai Y, Cui H (2017) Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 178:131–140

    CAS  PubMed  Google Scholar 

  81. 81.

    Cui H, Bai M, Rashed MMA, Lin L (2018) The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 266:69–78

    CAS  PubMed  Google Scholar 

  82. 82.

    Cui H, Bai M, Lin L (2018) Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr Polym 179:360–369

    CAS  PubMed  Google Scholar 

  83. 83.

    Dias Antunes M, da Silva Dannenberg G, Fiorentini AM, Pinto VZ, Lim LT, da Rosa Zavareze E, Dias ARG (2017) Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int J Biol Macromol 104(Pt A):874–882

    PubMed  Google Scholar 

  84. 84.

    Wen P, Zhu DH, Feng K, Liu FJ, Lou WY, Li N, Zong MH, Wu H (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/beta-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196:996–1004

    CAS  PubMed  Google Scholar 

  85. 85.

    Tonglairoum P, Chuchote T, Ngawhirunpat T, Rojanarata T, Opanasopit P (2014) Encapsulation of plai oil/2-hydroxypropyl-beta-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application. Pharm Dev Technol 19(4):430–437

    CAS  PubMed  Google Scholar 

  86. 86.

    Irene B, Veronica A, Laura A, Cosimo C (2014) A hyperbranched polyester as antinucleating agent for Artemisinin in electrospun nanofibers. Eur Polym J 60:145–152

    CAS  Google Scholar 

  87. 87.

    Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Nanofibers, IntechOpen

  88. 88.

    Yao ZC, Chen SC, Ahmad Z, Huang J, Chang MW, Li JS (2017) Essential oil bioactive fibrous membranes prepared via coaxial electrospinning. J Food Sci 82(6):1412–1422

    CAS  PubMed  Google Scholar 

  89. 89.

    Wang C, Yan K-W, Lin Y-D, Hsieh PC (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397

    CAS  Google Scholar 

  90. 90.

    Díaz JE, Barrero A, Márquez M, Loscertales IG (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater 16(16):2110–2116

    Google Scholar 

  91. 91.

    Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566

    CAS  Google Scholar 

  92. 92.

    Nguyen TTT, Ghosh C, Hwang S-G, Chanunpanich N, Park JS (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439(1–2):296–306

    CAS  PubMed  Google Scholar 

  93. 93.

    Xia X, Wang X, Zhou H, Niu X, Xue L, Zhang X, Wei Q (2014) The effects of electrospinning parameters on coaxial Sn/C nanofibers: morphology and lithium storage performance. Electrochim Acta 121:345–351

    CAS  Google Scholar 

  94. 94.

    Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing–a review. J Mater Chem B 1(36):4531–4541

    CAS  PubMed  Google Scholar 

  95. 95.

    Gui X, Hu J, Han Y (2019) Random and aligned electrospun gelatin nanofiber mats for human mesenchymal stem cells. Mater Res Innov 23(4):208–215

    CAS  Google Scholar 

  96. 96.

    Sfakis L, Sharikova A, Tuschel D, Costa FX, Larsen M, Khmaladze A, Castracane J (2017) Core/shell nanofiber characterization by Raman scanning microscopy. Biomed Optics Express 8(2):1025–1035

    CAS  Google Scholar 

  97. 97.

    Ghayempour S, Montazer M (2019) A novel controlled release system based on Tragacanth nanofibers loaded Peppermint oil. Carbohydr Polym 205:589–595

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fasa University of Medical Sciences (Grant No. 97269) supported this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Osanloo.

Ethics declarations

Conflict of interest

There is no conflict of interest to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osanloo, M., Arish, J. & Sereshti, H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym. Bull. 77, 6085–6104 (2020). https://doi.org/10.1007/s00289-019-03042-0

Download citation

Keywords

  • Essential oil
  • Electrospun
  • Nanofibers
  • Electrospinning
  • A systematic review