Synthesis of poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) conjugates by a new modular strategy

Abstract

Amphiphilic block copolymers where hydrophobicity and hydrophilicity coincide are essential building blocks for many supramolecular systems. By this time, polyethylene glycol (PEG) has been a conventional choice to constitute hydrophilicity; however, it suffers from certain drawbacks, severely limiting its use in these compounds. To date, one potential modality to overcome this complication is to utilize poly(2-ethyl-2-oxazoline) (PEtOx) instead, given that this also-hydrophilic polymer is very comparable to PEG, in many ways. In this regard, amphiphilic block copolymers harboring PEtOx and synthetic approaches to access these polymeric materials have been documented in the literature. Within this scope, we crafted a modular approach for the synthesis of poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) to govern its molecular structure. Herein, we extend this work and report a novel poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) derivative with electrophilic moiety on terminal position. We believe that this novel design could lead up to expeditious synthesis of block copolymer-biomolecule conjugates, which are of paramount significance for many applications.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K (2005) Smart polymeric micelles for gene and drug delivery. Drug Discov Today Technol 2(1):21–26. https://doi.org/10.1016/j.ddtec.2005.05.007

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jain JP, Ayen WY, Kumar N (2011) Self assembling polymers as polymersomes for drug delivery. Curr Pharm Des 17:65–79. https://doi.org/10.2174/138161211795049822

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131(13):4830–4838. https://doi.org/10.1021/ja809475a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Förster S, Plantenberg T (2002) From self-organizing polymers to nanohybrid and biomaterials. Angew Chem Int Ed 41:689–714. https://doi.org/10.1002/1521-3773(20020301)41:5%3c688:AID-ANIE688%3e3.0.CO;2-3

    Article  Google Scholar 

  5. 5.

    Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069. https://doi.org/10.1021/ma9908999

    CAS  Article  Google Scholar 

  6. 6.

    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev 54:459–476. https://doi.org/10.1016/S0169-409X(02)00022-4

    CAS  Article  Google Scholar 

  7. 7.

    Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221. https://doi.org/10.1038/nrd1033

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261–1277. https://doi.org/10.1016/S0169-409X(03)00108-X

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458. https://doi.org/10.1016/S1359-6446(05)03575-0

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119. https://doi.org/10.2174/138920012798356934

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Duan J, Liu C, Liang X, Li X, Chen Y, Chen Z, Wang X, Kong D, Li Y, Yang J (2018) Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)–poly(ethylene glycol) for long-term sustained release. Int J Nanomed 13:2743–2754. https://doi.org/10.2147/IJN.S161006

    CAS  Article  Google Scholar 

  12. 12.

    Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomed 5:1057–1065. https://doi.org/10.2147/IJN.S14912

    CAS  Article  Google Scholar 

  13. 13.

    Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D (2018) Poly(ethylene glycol)–polylactide micelles for cancer therapy. Front Pharmacol 9:202. https://doi.org/10.3389/fphar.2018.00202

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kutikov AB, Song J (2015) Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater Sci Eng 1(7):463–480. https://doi.org/10.1021/acsbiomaterials.5b00122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu G-Y, Chen C-J, Ji J (2012) Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 8:8811–8821. https://doi.org/10.1039/C2SM25721A

    CAS  Article  Google Scholar 

  16. 16.

    Veronese FM, Mero A, Pasut G (2009) Protein PEGylation, basic science and biological applications. PEGylated protein drugs: basic science and clinical applications. In: Veronese FM (ed) Milestones in drug therapy. Basel, Birkhäuser, pp 11–31. https://doi.org/10.1007/978-3-7643-8679-5_2

    Google Scholar 

  17. 17.

    Ulbricht J, Jordan R, Luxenhofer R (2014) On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35:4848–4861. https://doi.org/10.1016/j.biomaterials.2014.02.029

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconj Chem 22:976–986. https://doi.org/10.1021/bc200049d

    CAS  Article  Google Scholar 

  19. 19.

    Tao L, Liu J, Davis TP (2009) Branched polymer-protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules 12:2847–2851. https://doi.org/10.1021/bm900678r

    CAS  Article  Google Scholar 

  20. 20.

    Jain S, Hreczuk-Hirst DH, McCormack B, Mital M, Epenetos A, Laing P, Gregoriadis G (2003) Polysialylated insulin: synthesis, characterization and biological activity in vivo. Biochim Biophys Acta 1622:42–49. https://doi.org/10.1016/S0304-4165(03)00116-8

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Veronese FM, Sartore L, Caliceti P, Schiavon O, Ranucci E, Ferruti P (1990) Low molecular weight end-functionalized poly(N-vinylpyrrolidinone) for the modification of polypeptide amino groups. J Bioact Compat Polym 5:167–178. https://doi.org/10.1177/088391159400900404

    CAS  Article  Google Scholar 

  22. 22.

    Hoogenboom R (2007) Poly(2-oxazoline)s: alive and kicking. Macromol Chem Phys 208(1):18–25. https://doi.org/10.1002/macp.200600558

    CAS  Article  Google Scholar 

  23. 23.

    Zalipsky S, Hansen CB, Oaks JM, Allen TM (1996) Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci 85:133–137. https://doi.org/10.1021/js9504043

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lee SC, Chang YK, Yoon JS, Kim CH, Kwon IC, Kim YH, Jeong SY (1999) Synthesis and micellar characterization of amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and aliphatic polyesters. Macromolecules 32:1847–1852. https://doi.org/10.1021/ma981664k

    CAS  Article  Google Scholar 

  25. 25.

    Wiesbrock F, Hoogenboom R, Leenen MAM, Meier MAR, Schubert US (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034. https://doi.org/10.1021/ma0474170

    CAS  Article  Google Scholar 

  26. 26.

    Hoogenboom R, Wiesbrock F, Huang H, Leenen MAM, Thijs HML, Van Nispen SFGM, Van der Loop M, Fustin CA, Jonas AM, Gohy JF, Schubert US (2006) Microwave-assisted cationic ring-opening polymerisation of 2-oxazolines: a powerful method for the synthesis of amphiphilic triblock copolymers. Macromolecules 39:4719–4725. https://doi.org/10.1021/ma060952a

    CAS  Article  Google Scholar 

  27. 27.

    Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520. https://doi.org/10.1016/j.addr.2007.08.018

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mero A, Pasut G, Dalla VL, Fijten MW, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to peg-conjugates. J Control Release 2:87–95. https://doi.org/10.1016/j.jconrel.2007.10.010

    CAS  Article  Google Scholar 

  29. 29.

    Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48(43):7978–7994. https://doi.org/10.1002/anie.200901607

    CAS  Article  Google Scholar 

  30. 30.

    Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-Oxazoline)s: are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33(19):1648–1662. https://doi.org/10.1002/marc.201200453

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kobayashi S (2012) Polymerization of oxazolines. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 4. Elsevier, Amsterdam, pp 397–426. https://doi.org/10.1016/B978-0-444-53349-4.00110-2

    Google Scholar 

  32. 32.

    Hoogenboom R (2009) Polyethers and polyoxazolines. In: Dubois P, Coulembier O, Raquez J-M (eds) Handbook of ring-opening polymerization. Wiley, Weinheim, pp 141–164. https://doi.org/10.1002/9783527628407.ch6

    Google Scholar 

  33. 33.

    Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631. https://doi.org/10.1002/marc.201200354

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Isaacman MJ, Theogarajan L (2013) Poly(oxazoline) block copolymers for biomedical applications. Tailored Polym Archit Pharm Biomed Appl 1135:53–68. https://doi.org/10.1021/bk-2013-1135.ch005

    CAS  Article  Google Scholar 

  35. 35.

    Gulyuz S, Ozkose UU, Kocak P, Telci D, Yilmaz O, Tasdelen MA (2018) In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline)-based amphiphilic block copolymers prepared by CuAAC click chemistry. Express Polym Lett 12(2):146–158. https://doi.org/10.3144/expresspolymlett.2018.13

    CAS  Article  Google Scholar 

  36. 36.

    Zhang Y, He H, Gao C (2008) Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules 41:9581–9594. https://doi.org/10.1021/ma801696z

    CAS  Article  Google Scholar 

  37. 37.

    Cai T, Li M, Neoh KG, Kang ET (2013) Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry. J Mater Chem B 1:1304–1315. https://doi.org/10.1039/C2TB00273F

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/ b2059dat.pdf

  39. 39.

    Britto PJ, Knipling L, Wolff J (2002) the local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem 277:29018–29027. https://doi.org/10.1074/jbc.M204263200

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Gurd FRN (1967) Carboxymethylation. Methods Enzymol 11:532–541. https://doi.org/10.1016/S0076-6879(67)11064-1

    CAS  Article  Google Scholar 

  41. 41.

    Stark GR, Stein WH, Moore S (1961) Relationships between the conformation of ribonuclease and its reactivity toward iodoacetate. J Biol Chem 236:436–442

    CAS  Google Scholar 

  42. 42.

    Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Pressly ED, Amir RJ, Hawker CJ (2011) Rapid synthesis of block and cyclic copolymers via click chemistry in the presence of copper nanoparticles. J Polym Sci A Polym Chem 49(3):814–819. https://doi.org/10.1002/pola.24504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lutz JF, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv Drug Deliv Rev 60:958–970. https://doi.org/10.1016/j.addr.2008.02.004

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Guis C, Cheradame H (2000) Synthesis of polymers containing pseudohalide groups by cationic polymerization 15. Study of the functionalizing living cationic polymerization of 2-methyl-2-oxazoline in the presence of trimethylsilylazide. Eur Polym J 36:2581–2590. https://doi.org/10.1016/S0014-3057(00)00071-9

    CAS  Article  Google Scholar 

  46. 46.

    Hoogenboom R, Fijten MWM, Meier MAR, Schubert US (2003) Living cationic polymerizations utilizing an automated synthesizer: high-throughput synthesis of polyoxazolines. Macromol Rapid Commun 24:92–97. https://doi.org/10.1002/marc.200390003

    CAS  Article  Google Scholar 

  47. 47.

    Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 37:6786–6792. https://doi.org/10.1021/ma049677n

    CAS  Article  Google Scholar 

  48. 48.

    Aoi K, Okada M (1996) Polymerization of oxazolines. Prog Polym Sci 21:151–208. https://doi.org/10.1016/0079-6700(95)00020-8

    CAS  Article  Google Scholar 

  49. 49.

    Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci A Polym Chem 42:1830–1840. https://doi.org/10.1002/pola.20024

    CAS  Article  Google Scholar 

  50. 50.

    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. https://doi.org/10.1021/cr940351u

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862. https://doi.org/10.1038/42218

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Kowalski A, Duda A, Pencaek S (2000) Mechanism of cyclic ester polymerization initiated with tin (II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33:689–695. https://doi.org/10.1021/ma9906940

    CAS  Article  Google Scholar 

  53. 53.

    Alvaradejo GG, Glassner M, Hoogenboom R, Delaittre G (2018) Maleimide end-functionalized poly(2-oxazoline)s by the functional initiator route: synthesis and (bio)conjugation. RSC Adv 8:9471–9479. https://doi.org/10.1039/C8RA00948A

    Article  Google Scholar 

  54. 54.

    Bontempo D, Heredia KL, Fish BA, Maynard HD (2004) Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J Am Chem Soc 126:15372–15373. https://doi.org/10.1021/ja045063m

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Mathews AS, Ahmed S, Shahin M, Lavasanifar A, Kaur K (2013) Peptide modified polymeric micelles specific for breast cancer cells. Bioconj Chem 24:560–570. https://doi.org/10.1021/bc3004364

    CAS  Article  Google Scholar 

  56. 56.

    Etayash H, Jiang K, Azmi S, Thundat T, Kaur K (2015) Real-time detection of breast cancer cells using peptide functionalized microcantilever arrays. Sci Rep 5(13967):1–13. https://doi.org/10.1038/srep13967

    CAS  Article  Google Scholar 

  57. 57.

    Lewandowski B, de Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339(6116):189–193. https://doi.org/10.1126/science.1229753

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Turkish Scientific and Technological Council (TUBITAK-213M725) for financial supports.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Onur Alpturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozkose, U.U., Yilmaz, O. & Alpturk, O. Synthesis of poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) conjugates by a new modular strategy. Polym. Bull. 77, 5647–5662 (2020). https://doi.org/10.1007/s00289-019-03038-w

Download citation

Keywords

  • Amphiphilic block copolymer
  • Copper-catalyzed azide-alkyne cycloaddition click chemistry
  • Conjugation of biological functionalities
  • Poly(ε-caprolactone)
  • Polyoxazoline