Skip to main content
Log in

Compatibilization of clays and hydrophobic polymers: the case of montmorillonite and polyetheretherketone

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the last three decades, nanoclay fillers have been increasingly used to improve the mechanical, thermal, barrier and biological properties of the polymers. Nevertheless, incorporation of clays into the hydrophobic polymer matrices leads to the formation of the microcomposites with the minimal improvement in properties. To overcome the intrinsic incompatibility between the clays and the hydrophobic polymers, clay particles are organophilized using organic modifiers. The organic modifier should be thermodynamically miscible with the polymer. In the case of the composites prepared at high temperatures, the organic modifier should also have a high thermal stability to withstand the processing temperature. Taking into account these requisites, this study proposes a novel procedure for screening the diverse sets of the ionic liquids to find the most appropriate organic modifiers for compatibilization of the clays and any given hydrophobic polymers. The proposed procedure has been used to find the appropriate organic modifier to compatibilize montmorillonite clay (MMT) and polyetheretherketone (PEEK). Composites of PEEK filled with MMT and the organically modified MMT (OMMT) were synthesized via melt compounding. Then, they were characterized by FTIR, XRD and TEM. The results showed that the selected organic modifier satisfied both the processing requirements and the thermodynamic considerations and improved the dispersion of MMT particles within the PEEK matrix. The XRD patterns and TEM micrographs confirmed the formation of the PEEK/OMMT nanocomposite with intercalated/exfoliated morphology. The findings of this study provide a practical means for compatibilization of immiscible clays and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maniar KK (2004) Polymeric nanocomposites: a review. Polym Plast Technol Eng 43(2):427–443

    CAS  Google Scholar 

  2. Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    CAS  Google Scholar 

  3. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53(3–4):73–197

    Google Scholar 

  4. Wetzel B, Haupert F, Friedrich K, Zhang MQ, Rong MZ (2002) Impact and wear resistance of polymer nanocomposites at low filler content. Polym Eng Sci 42(9):1919–1927

    CAS  Google Scholar 

  5. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 42(6):1362–1369

    CAS  Google Scholar 

  6. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959

    CAS  Google Scholar 

  7. Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9(4):262

    PubMed Central  Google Scholar 

  8. Zeng Q, Yu A, Lu G, Paul D (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5(10):1574–1592

    CAS  PubMed  Google Scholar 

  9. Mittal V (2010) Polymer nanocomposites: synthesis, microstructure, and properties. In: Mittal V (ed) Optimization of polymer nanocomposite properties. Wiley, Hoboken, pp 1–19

    Google Scholar 

  10. Neyra CA (1983) Crystal structures of clay minerals and their X-ray identification. Soil Sci 135(2):126

    Google Scholar 

  11. Haldar SK (2013) Introduction to mineralogy and petrology. Elsevier, Amsterdam

    Google Scholar 

  12. Okada A, Usuki A (2006) Twenty years of polymer–clay nanocomposites. Macromol Mater Eng 291(12):1449–1476

    CAS  Google Scholar 

  13. Yeh J-M, Chang K-C (2008) Polymer/layered silicate nanocomposite anticorrosive coatings. J Ind Eng Chem 14(3):275–291

    CAS  Google Scholar 

  14. Kiliaris P, Papaspyrides C (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35(7):902–958

    CAS  Google Scholar 

  15. Lee S, Kwon O, Kang Y, Song S (2016) Styrene butadiene rubber/clay nanocomposites for tire tread application. Plast Rubber Compos 45(9):382–388

    CAS  Google Scholar 

  16. De Abreu DP, Losada PP, Angulo I, Cruz J (2007) Development of new polyolefin films with nanoclays for application in food packaging. Eur Polym J 43(6):2229–2243

    Google Scholar 

  17. Ambre AH, Katti KS, Katti DR (2010) Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol Eng Med 1(3):031013

    Google Scholar 

  18. Mishra A, Singh SK, Dash D, Aswal VK, Maiti B, Misra M et al (2014) Self-assembled aliphatic chain extended polyurethane nanobiohybrids: emerging hemocompatible biomaterials for sustained drug delivery. Acta Biomater 10(5):2133–2146

    CAS  PubMed  Google Scholar 

  19. Vermogen A, Masenelli-Varlot K, Séguéla R, Duchet-Rumeau J, Boucard S, Prele P (2005) Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38(23):9661–9669

    CAS  Google Scholar 

  20. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Google Scholar 

  21. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187

    CAS  Google Scholar 

  22. Gong F, Feng M, Zhao C, Zhang S, Yang M (2004) Thermal properties of poly (vinyl chloride)/montmorillonite nanocomposites. Polym Degrad Stab 84(2):289–294

    CAS  Google Scholar 

  23. Yoshida O, Okamoto M (2006) Direct melt intercalation of polylactide chains into nano-galleries: interlayer expansion and nano-composite structure. Macromol Rapid Commun 27(10):751–757

    CAS  Google Scholar 

  24. Zhang X, Xu R, Wu Z, Zhou C (2003) The synthesis and characterization of polyurethane/clay nanocomposites. Polym Int 52(5):790–794

    Google Scholar 

  25. Jurkowska B, Jurkowski B, Oczkowski M, Pesetskii S, Koval V, Olkhov Y (2007) Properties of montmorillonite-containing natural rubber. J Appl Polym Sci 106(1):360–371

    CAS  Google Scholar 

  26. Bhattacharya M, Maiti M, Bhowmick AK (2009) Tailoring properties of styrene butadiene rubber nanocomposite by various nanofillers and their dispersion. Polym Eng Sci 49(1):81–98

    CAS  Google Scholar 

  27. Wang S, Hu Y, Song L, Wang Z, Chen Z, Fan W (2002) Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym Degrad Stab 77(3):423–426

    CAS  Google Scholar 

  28. Kim NH, Malhotra SV, Xanthos M (2006) Modification of cationic nanoclays with ionic liquids. Microporous Mesoporous Mater 96(1–3):29–35

    CAS  Google Scholar 

  29. Holbrey J, Seddon K (1999) Ionic liquids. Clean Prod Process 1(4):223–236

    Google Scholar 

  30. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    CAS  Google Scholar 

  31. Ray SS (2014) Recent trends and future outlooks in the field of clay-containing polymer nanocomposites. Macromol Chem Phys 215(12):1162–1179

    CAS  Google Scholar 

  32. Attwood T, Dawson P, Freeman J, Hoy L, Rose J, Staniland P (1981) Synthesis and properties of polyaryletherketones. Polymer 22(8):1096–1103

    CAS  Google Scholar 

  33. Xiong D, Xiong L, Liu L (2010) Preparation and tribological properties of polyetheretherketone composites. J Biomed Mater Res B Appl Biomater 93(2):492–496

    PubMed  Google Scholar 

  34. Shekar RI, Kotresh T, Rao PD, Kumar K (2009) Properties of high modulus PEEK yarns for aerospace applications. J Appl Polym Sci 112(4):2497–2510

    CAS  Google Scholar 

  35. Small G (2014) Outstanding physical properties make PEEK ideal for sealing applications. Seal Technol 2014(4):9–12

    Google Scholar 

  36. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):118

    PubMed  Google Scholar 

  38. Schinner G, Brandt J, Richter H (1996) Recycling carbon-fiber-reinforced thermoplastic composites. J Thermoplast Compos Mater 9(3):239–245

    CAS  Google Scholar 

  39. Cogswell FN (2013) Thermoplastic aromatic polymer composites: a study of the structure, processing and properties of carbon fibre reinforced polyetheretherketone and related materials. Elsevier, Amsterdam

    Google Scholar 

  40. Awad WH, Gilman JW, Nyden M, Harris RH Jr, Sutto TE, Callahan J et al (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409(1):3–11

    CAS  Google Scholar 

  41. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Google Scholar 

  42. Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53(20):8651–8664

    CAS  Google Scholar 

  43. Jang BN, Wang D, Wilkie CA (2005) Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay nanocomposites and the role of the surfactant. Macromolecules 38(15):6533–6543

    CAS  Google Scholar 

  44. Barton AF (2017) CRC handbook of solubility parameters and other cohesion parameters. Routledge, Abingdon

    Google Scholar 

  45. Høgsaa B, Fini EH, Christiansen JC, Hung A, Mousavi M, Jensen EA et al (2018) A novel bioresidue to compatibilize sodium montmorillonite and linear low density polyethylene. Ind Eng Chem Res 57(4):1213–1224

    Google Scholar 

  46. Gupta J, Nunes C, Vyas S, Jonnalagadda S (2011) Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 115(9):2014–2023

    CAS  PubMed  Google Scholar 

  47. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  48. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    CAS  Google Scholar 

  49. Derecskei B, Derecskei-Kovacs A (2008) Molecular modelling simulations to predict density and solubility parameters of ionic liquids. Mol Simul 34(10–15):1167–1175

    CAS  Google Scholar 

  50. Ramos-Rodríguez D-A, Rodriguez-Hidalgo M-R, Soto-Figueroa C, Vicente L (2010) Molecular and mesoscopic study of ionic liquids and their use as solvents of active agents released by polymeric vehicles. Mol Phys 108(5):657–665

    Google Scholar 

  51. Sistla YS, Jain L, Khanna A (2012) Validation and prediction of solubility parameters of ionic liquids for CO2 capture. Sep Purif Technol 97:51–64

    CAS  Google Scholar 

  52. Sasikumar Y, Adekunle A, Olasunkanmi L, Bahadur I, Baskar R, Kabanda M et al (2015) Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J Mol Liq 211:105–118

    CAS  Google Scholar 

  53. Eichinger B, Rigby D, Stein J (2002) Cohesive properties of Ultem and related molecules from simulations. Polymer 43(2):599–607

    CAS  Google Scholar 

  54. Zhang M, Choi P, Sundararaj U (2003) Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly (ether imide)/polycarbonate blends. Polymer 44(6):1979–1986

    CAS  Google Scholar 

  55. Tocci E, Pullumbi P (2006) Molecular simulation of realistic membrane models of alkylated PEEK membranes. Mol Simul 32(2):145–154

    CAS  Google Scholar 

  56. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Google Scholar 

  57. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    CAS  Google Scholar 

  58. Berendsen HJ, Postma J, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    CAS  Google Scholar 

  59. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    CAS  Google Scholar 

  60. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412(1–2):47–53

    CAS  Google Scholar 

  61. Maria Siedlecka E, Czerwicka M, Stolte S, Stepnowski P (2011) Stability of ionic liquids in application conditions. Curr Org Chem 15(12):1974–1991

    Google Scholar 

  62. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425(1–2):181–188

    Google Scholar 

  63. Zhou ZB, Matsumoto H, Tatsumi K (2004) Low‐melting, low‐viscous, hydrophobic ionic liquids: 1‐alkyl (alkyl ether)‐3‐methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10(24):6581–6591

    CAS  PubMed  Google Scholar 

  64. Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S (2009) Ionic liquids: physicochemical properties. Elsevier, Amsterdam

    Google Scholar 

  65. Fredlake CP, Crosthwaite JM, Hert DG, Aki SN, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49(4):954–964

    CAS  Google Scholar 

  66. Sun X-L, Gu L, Qiu D, Ren D-H, Gu Z-G, Li Z (2015) The solid–liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2′-binaphthyldiyl-17-crown-5. J Radioanal Nucl Chem 303(3):2271–2282

    CAS  Google Scholar 

  67. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600

    CAS  Google Scholar 

  68. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3(4):156–164

    CAS  Google Scholar 

  69. James EM (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  70. Bicerano J (2002) Prediction of polymer properties. CRC Press, Boca Raton

    Google Scholar 

  71. Wypych G (2016) Handbook of polymers. Elsevier, Amsterdam

    Google Scholar 

  72. Adamson MJ (1980) Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci 15(7):1736–1745

    CAS  Google Scholar 

  73. Fried J, Li B (2001) Atomistic simulation of the glass transition of di-substituted polysilanes. Comput Theor Polym Sci 11(4):273–281

    CAS  Google Scholar 

  74. Wu C, Xu W (2007) Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 48(19):5802–5812

    CAS  Google Scholar 

  75. Chen X, Yuan C, Wong CK, Zhang G (2012) Molecular modeling of temperature dependence of solubility parameters for amorphous polymers. J Mol Model 18(6):2333–2341

    CAS  PubMed  Google Scholar 

  76. Utracki L, Simha R (2004) Statistical thermodynamics predictions of the solubility parameter. Polym Int 53(3):279–286

    CAS  Google Scholar 

  77. Mutelet F, Butet V, Jaubert J-N (2005) Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Ind Eng Chem Res 44(11):4120–4127

    CAS  Google Scholar 

  78. Mutelet F, Jaubert J-N (2007) Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Chem Thermodyn 39(8):1144–1150

    CAS  Google Scholar 

  79. Marciniak A (2010) The solubility parameters of ionic liquids. Int J Mol Sci 11(5):1973–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Goswami SK, Ghosh S, Mathias LJ (2012) Thermally stable organically modified layered silicates based on alkyl imidazolium salts. J Colloid Interface Sci 368(1):366–371

    CAS  PubMed  Google Scholar 

  81. Reinert L, Batouche K, Lévêque J-M, Muller F, Bény J-M, Kebabi B et al (2012) Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite: characterisation and thermodynamic calculations. Chem Eng J 209:13–19

    CAS  Google Scholar 

  82. Madejova J, Komadel P (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 49(5):410–432

    CAS  Google Scholar 

  83. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE et al (2017) Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 7(4):49

    Google Scholar 

  84. Bishop JL, Pieters CM, Edwards JO (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner 42:702–716

    CAS  Google Scholar 

  85. Abdallah W, Yilmazer U (2011) Novel thermally stable organo-montmorillonites from phosphonium and imidazolium surfactants. Thermochim Acta 525(1–2):129–140

    CAS  Google Scholar 

  86. Talaty ER, Raja S, Storhaug VJ, Dölle A, Carper WR (2004) Raman and infrared spectra and ab initio calculations of C2–4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108(35):13177–13184

    CAS  Google Scholar 

  87. Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A (2010) The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys Chem Chem Phys 12(42):14153–14161

    CAS  PubMed  Google Scholar 

  88. Al Lafi AG (2014) FTIR spectroscopic analysis of ion irradiated poly (ether ether ketone). Polym Degrad Stab 105:122–133

    CAS  Google Scholar 

  89. Al Lafi AG (2015) The sulfonation of poly (ether ether ketone) as investigated by two‐dimensional FTIR correlation spectroscopy. J Appl Polym Sci https://doi.org/10.1002/app.41242

    Article  Google Scholar 

  90. Aliouane N, Hammouche A, De Doncker R, Telli L, Boutahala M, Brahimi B (2002) Investigation of hydration and protonic conductivity of H-montmorillonite. Solid State Ionics 148(1–2):103–110

    CAS  Google Scholar 

  91. Blundell D, Osborn B (1983) The morphology of poly (aryl-ether-ether-ketone). Polymer 24(8):953–958

    CAS  Google Scholar 

  92. Liu C, Chan KW, Shen J, Liao CZ, Yeung KWK, Tjong SC (2016) Polyetheretherketone hybrid composites with bioactive nanohydroxyapatite and multiwalled carbon nanotube fillers. Polymers 8(12):425

    PubMed Central  Google Scholar 

  93. Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73(1):55–63

    CAS  Google Scholar 

  94. Rhim J-W (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohyd Polym 86(2):691–699

    CAS  Google Scholar 

  95. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1996) Microstructural evolution of melt intercalated polymer—organically modified layered silicates nanocomposites. Chem Mater 8(11):2628–2635

    CAS  Google Scholar 

  96. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338

    CAS  Google Scholar 

  97. Chen B, Evans JR, Greenwell HC, Boulet P, Coveney PV, Bowden AA et al (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37(3):568–594

    PubMed  Google Scholar 

  98. Aydin M, Uyar T, Tasdelen MA, Yagci Y (2015) Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. J Polym Sci Part A Polym Chem 53(5):650–658

    CAS  Google Scholar 

  99. Liu J, Boo W-J, Clearfield A, Sue H-J (2006) Intercalation and exfoliation: a review on morphology of polymer nanocomposites reinforced by inorganic layer structures. Mater Manuf Processes 21(2):143–151

    CAS  Google Scholar 

  100. Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D (2006) Molecular interactions in intercalated organically modified clay and clay–polycaprolactam nanocomposites: experiments and modeling. Polymer 47(1):403–414

    CAS  Google Scholar 

  101. Sikdar D, Katti DR, Katti KS, Bhowmik R (2006) Insight into molecular interactions between constituents in polymer clay nanocomposites. Polymer 47(14):5196–5205

    CAS  Google Scholar 

  102. Sikdar D, Katti KS, Katti DR (2008) Molecular interactions alter clay and polymer structure in polymer clay nanocomposites. J Nanosci Nanotechnol 8(4):1638–1657

    CAS  PubMed  Google Scholar 

  103. Sinsawat A, Anderson KL, Vaia RA, Farmer B (2003) Influence of polymer matrix composition and architecture on polymer nanocomposite formation: coarse-grained molecular dynamics simulation. J Polym Sci Part B Polym Phys 41(24):3272–3284

    CAS  Google Scholar 

  104. Scocchi G, Posocco P, Fermeglia M, Pricl S (2007) Polymer–clay nanocomposites: a multiscale molecular modeling approach. J Phys Chem B 111(9):2143–2151

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Akbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandsalimi, K., Akbari, B., Mehrnejad, F. et al. Compatibilization of clays and hydrophobic polymers: the case of montmorillonite and polyetheretherketone. Polym. Bull. 77, 5505–5527 (2020). https://doi.org/10.1007/s00289-019-03036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03036-y

Keywords

Navigation