Synthesis and properties of degradable gels and porous polymers including acetal group in the network structure by addition reaction of multi-functional phenols and divinyl ether compounds


Gels containing acetal group have been synthesized by addition reaction of multi-functional phenols, 1,1,1-tris(4-hydroxyphenyl)ethane (THPE) or tannic acid (TA) and divinylethers, diethylene glycol divinyl ether (DEGVE) or polyethylene glycol divinyl ether (PEGVE) in tetrahydrofuran (THF) or 1,4-dioxane (DO) using pyridinium p-toluenesulfonate as a catalyst under nitrogen atmosphere. The gels synthesized from DEGVE showed higher Young’s modulus, breaking stress, and lower breaking strain than the gels synthesized from PEGVE. The gels in DO showed higher mechanical properties than those in THF due to the high affinity between the network structure and the solvent used. The gels with TA showed lower Young’s modulus than those with THPE derived from flexible molecular structure of TA. The reaction of THPE and PEGVE in acetonitrile induced phase separation, and yielded porous polymer formed by connected globules about 10 μm diameter. The dried porous polymers showed remarkable increase in the Young’s modulus in comparison with the corresponding gels in THF or DO. The gels and porous polymers were degraded under atmospheric conditions caused by hydrolytic degradation of acetal groups in the network structure. The present hydrolytic degradable materials would be applicable for drug carriers or sensors for humidity or water.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Garrison T, Murawski A, Quirino R (2016) Bio-based polymers with potential for biodegradability. Polymers 8:262.

    CAS  Article  PubMed Central  Google Scholar 

  2. 2.

    Acik G, Karabulut HRF, Altinkok C, Karatavuk AO (2019) Synthesis and characterization of biodegradable polyurethanes made from cholic and L-lysine diisocyanate ethyl ether. Polym Degrad Stab 165:43–48.

    CAS  Article  Google Scholar 

  3. 3.

    Kenley RA, Manser GE (1985) Degradable polymers. Incorporating a difunctional azo compound into a polymer network to produce thermally degradable polyurethanes. Macromolecules 18:127–131.

    CAS  Article  Google Scholar 

  4. 4.

    Ogino K, Chen J-S, Ober CK (1988) Synthesis and characterization of thermally degradable polymer networks. Chem Mater 10:383–3838.

    Article  Google Scholar 

  5. 5.

    Burkoth AK, Anseth KS (1991) MALD-TOF characterization of highly cross-linked, degradable polymer networks. Macromolecules 32:1438–1444.

    Article  Google Scholar 

  6. 6.

    Timmer MD, Jo S, Wang C, Ambrose CG, Mikos AG (2002) Characterization of the cross-linked structure of fumarate-based degradable polymer networks. Macromolecules 35:4373–4379.

    CAS  Article  Google Scholar 

  7. 7.

    Chen JS, Ober CK, Poliks MD (2002) Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse. Polymer 43:131–139.

    CAS  Article  Google Scholar 

  8. 8.

    Shirai M, Morishita S, Okamura H, Tsunooka M (2002) Photo-cross-linkable polymers with thermally degradable property. Chem Mater 14:334–340.

    CAS  Article  Google Scholar 

  9. 9.

    Johnson JA, Lewis DR, Diaz DD, Finn MG, Koberstein JT, Turro NJ (2006) Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc 128:6564–6565.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Matsukawa D, Okamura H, Shirai M (2007) Degradable network polymers based on di(metha)acrylate. Chem Lett 36:1290–1291.

    CAS  Article  Google Scholar 

  11. 11.

    Kitamura T, Matsumoto A (2007) Facile synthesis of degradable gels by oxygen cross-linking of polymers including a dienyl group on their side chain or at chain ends. Macromolecules 40:6143–6149.

    CAS  Article  Google Scholar 

  12. 12.

    Kitamura T, Matsumoto A (2007) Synthesis of poly(lactic acid) with branched and network structures containing thermally degradable junctions. Macromolecules 40:509–517.

    CAS  Article  Google Scholar 

  13. 13.

    Brauer DS, Russel C, Vogt S, Weisser J, Schnabelrauch M (2008) Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci Mater Med 19:121–127.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Shipp DA, McQuinn CW, Rutherglen BG, McBath RA (2009) Elastomeric and degradable polyanhydride network polymers by step-growth thiol-ene photopolymerization. Chem Commun 1:6415–6417.

    Article  Google Scholar 

  15. 15.

    Mihashi A, Tamura H, Sato H, Matsumoto A (2010) Synthesis of degradable network polymers containing peroxy units in the main chain or the cross-linking point. Prog Org Coat 68:42–47.

    CAS  Article  Google Scholar 

  16. 16.

    Safranski DL, Crabtree JC, Huq YR, Gall K (2011) Thermo-mechanical properties of semi-degradable poly(β-amino ester)-co-methyl methacrylate networks under simulated physiological conditions. Polymer 52:4920–4927.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Fukuda K, Shimoda M, Sukegawa M, Nobori T, Lehn JM (2012) Doubly degradable dynamers: dynamic covalent polymers based on reversible imine and biodegradable polyester units. Green Chem 14:2907–2911.

    CAS  Article  Google Scholar 

  18. 18.

    Kharkar RM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironment. Chem Soc Rev 42:7355–7372.

    CAS  Article  Google Scholar 

  19. 19.

    Shirai M (2014) Photocrosslinkable polymers with degradable properties. Polym J 46:859–865.

    CAS  Article  Google Scholar 

  20. 20.

    Ware T, Jennings AR, Bassampour ZS, Simon D, Son DY, Voit W (2014) Degradable, silyl ether thiol-ene networks. RSC Adv 4:39991–40002.

    CAS  Article  Google Scholar 

  21. 21.

    Kharkar PM, Kiick K, Kloxin AP (2015) Design of thiol- and light-sensitive degradable hydrogels using Michael-type addition reactions. Polym Chem 6:5565–5574.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Xu F, Sheardown H, Hoare T (2016) Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel network. Chem Commun 52:1451–1454.

    CAS  Article  Google Scholar 

  23. 23.

    Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanics of controlling drug release. Chem Rev 116:2602–2663.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lu W, Pan X, Zhang Z, Zhu J, Zhou N, Zhu X (2017) A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym Chem 8:3874–3880.

    CAS  Article  Google Scholar 

  25. 25.

    Babra TS, Trivedi A, Warriner CN, Bazin N, Castiglione D, Sivour C, Hayes W, Greenland BW (2017) Fluoride degradable and thermally debondable polyurethane based adhesive. Polym Chem 8:7207–7216.

    CAS  Article  Google Scholar 

  26. 26.

    Bednarek M, Kubisa P (2019) Reversible networks of degradable polyesters containing weak covalent bonds. Polym Chem 10:1848–1872.

    CAS  Article  Google Scholar 

  27. 27.

    De Clercq RR, Goethals EJ (1992) Polymer networks containing degradable polyacetal segments. Macromolecules 25:1109–1113.

    Article  Google Scholar 

  28. 28.

    Buchwalter SL, Kosbar LL (1996) Cleavable epoxy resins: design for disassembly of a thermoset. J Polym Sci Part A Polym Chem 34:249–260.

    CAS  Article  Google Scholar 

  29. 29.

    Sui XC, Shi Y, Fu ZF (2010) Novel degradable polymer networks containing acetal components and well-defined backbones. Australian J Chem 63:1497–1501.

    CAS  Article  Google Scholar 

  30. 30.

    Sui X (2011) Shi Y, Fu Z (2011) Novel degradable polymer networks containing acetal components. Sci China Chem 54:419–425.

    CAS  Article  Google Scholar 

  31. 31.

    Kepola EJ, Patrickios CS (2018) Networks based on “core-first” star polymers end-linked using a degradable ketal cross-linker: synthesis characterization, and cleavage. Macromol Chem Phys 219:1700404.

    CAS  Article  Google Scholar 

  32. 32.

    Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios CS (2012) End-linked, amphiphilic, degradable polymer conetworks: synthesis by sequential atom transfer radical polymerization using a bifunctional, cleavable initiator. Polym Chem 3:105–116.

    CAS  Article  Google Scholar 

  33. 33.

    Zhao C, Patel K, Aichinger LM, Liu Z, Hu R, Chen H, Li X, Li L, Zhang G, Chang Y, Zheng J (2013) Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Adv 3:19991–20000.

    CAS  Article  Google Scholar 

  34. 34.

    Cao H, Dong Y, Bre L, Tapeinos C, Wang W, Pandit A (2016) An acetal-based polymeric crosslinker with controlled pH-sensitivity. RSC Adv 6:9064–9611.

    Article  Google Scholar 

  35. 35.

    Amato DV, Amato DN, Blancett LT, Mavrodi OV, Martin WB, Swilley SN, Sandoz MJ, Shearer G, Mavrodi DV, Patton DL (2018) A bio-based pro-antimicrobial polymer network via degradable acetal linkages. Acta Biomater 67:196–205.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Miller KA, Morado EG, Samanta SR, Walker BA, Nelson AZ, Sen S, Tran DT, Whitaker DJ, Ewoldt RH, Braun PV, Zimmerman SC (2019) Acid-triggered, acid-generating, and self-amplifying degradable polymers. J Am Chem Soc 141:2838–2842.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Naga N, Oda E, Toyota A, Horie K, Furukawa H (2006) Tailored synthesis and fundamental characterization of organic-inorganic hybrid gels by means of a hydrosilylation reaction. Macromol Chem Phys 207:627–635.

    CAS  Article  Google Scholar 

  38. 38.

    Naga N, Oda E, Toyota A, Furukawa H (2007) Mesh size control of organic-inorganic hybrid gels by means of a hydrosilylation co-gelation of siloxane or silsesquioxane and α, ω-non-conjugated dienes. Macromol Chem Phys 208:2331–2338.

    CAS  Article  Google Scholar 

  39. 39.

    Naga N, Kihara Y, Miyanaga T, Furukawa H (2009) Synthesis of organic−inorganic hybrid gels from siloxane or silsesquioxane and α, ω-nonconjugated dienes by means of a photo hydrosilylation reaction. Macromolecules 42:3454–3462

    CAS  Article  Google Scholar 

  40. 40.

    Naga N, Nagino H, Furukawa H (2016) Synthesis of organic-inorganic hybrid gels by means of thiol-ene and azide-alkene reactions. J Polym Sci Part A Polym Chem 54:2229–2238.

    CAS  Article  Google Scholar 

  41. 41.

    Naga N, Michida R, Kudo S, Nagami Y, Moriyama K, Nageh H, Furukawa H, Nakano T (2019) Synthesis of joint-linker type gels and porous polymers by addition reactions of multi-functional thiol and alkyl diacrylate, diisocyanate compounds. Mater Today Commun 1:18153–18162.

    CAS  Article  Google Scholar 

  42. 42.

    Hashimoto T, Misawa K, Urushisaki M (2008) Synthesis and properties of chemically recyclable polyurethane thermoplastic elastomers containing degradable polyacetal soft segments. Kobunshi Ronbunshu 65:178–184.

    CAS  Article  Google Scholar 

  43. 43.

    Hashimoto T, Umehara A, Ishizuka K, Kodaira T (2001) New synthetic method of hydroxyl-terminated telechelic polyacetals based on polyaddition of hydroxyalkyl vinyl ether in the presence of diol. Proc Jpn Acad Ser B 77:63–67.

    Article  Google Scholar 

  44. 44.

    Hashimoto T, Ishizuka K, Umehara A, Kodaira T (2002) Synthesis of polyacetals with various main-chain structures by the self-polyaddition of vinyl ethers with a hydroxyl function. J Polym Sci Part A Polym Chem 40:4053–4064.

    CAS  Article  Google Scholar 

  45. 45.

    Hashimoto T, Umehara A, Urushisaki M, Kodaira T (2004) Synthesis of a new degradable polyurethane elastomer containing polyacetal soft segments. J Polym Sci Part A Polym Chem 42:2766–2773.

    CAS  Article  Google Scholar 

  46. 46.

    Fedros RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154.

    Article  Google Scholar 

  47. 47.

    Inoue T (1995) Reaction-induced phase decomposition in polymer blends. Prog Polym Sci 20:119–153.

    CAS  Article  Google Scholar 

  48. 48.

    Yamanaka K, Inoue T (1989) Structure development in epoxy resin modified with poly(ether sulphone). Polymer 30:662–667.

    CAS  Article  Google Scholar 

  49. 49.

    Ohnaga T, Inoue T (1989) Growth and decay of concentration fluctuations in polymer–polymer mixtures. J Polym Sci Part B Polym Phys 27:1675–1689.

    CAS  Article  Google Scholar 

  50. 50.

    Inoue T, Ichihara S (1988) Polymer alloy. In: Society of Polymer Science (ed). Kyoritsu Shuppan, Japan

Download references


This work was partially supported by JSPS KAKENHI Grant Number 24550261.

Author information



Corresponding author

Correspondence to Naofumi Naga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naga, N., Hasegawa, K., Nageh, H. et al. Synthesis and properties of degradable gels and porous polymers including acetal group in the network structure by addition reaction of multi-functional phenols and divinyl ether compounds. Polym. Bull. 77, 5631–5645 (2020).

Download citation


  • Phenols
  • Divinyl ether
  • Acetal
  • Gel
  • Porous polymer
  • Network structure
  • Mechanical property