Skip to main content

Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane

Abstract

In this research, the effect of polyethylene glycol (PEG) molecular weight on permeability and selectivity of polysulfone/polyethylene glycol (PSF/PEG) composite membrane is investigated. Polyethylene glycol with molecular weights of 4000, 6000, and 10,000 is applied. It is shown from the results that PEG applied in composite membranes with molecular weight of 1000 had the best diffusivity in comparison with the other composite membranes containing PEG with lower molecular weights. In addition, it is perceived that the permeability of CO2 from PSF/PEG10000 composite membranes has increased with enhancing weight percent. CO2 permeability into PSF/PEG composite membranes containing 20 wt% PEG10000 is calculated 7.64 barrer (1 barrer = 10−10 cm3 (STP) cm/cm2 s cmHg). The ideal selectivity for CO2/N2 gas pair in PSF pure membrane and composite membranes containing 10 wt% and 20 wt% PEG10000 are calculated 26.57, 30.61, and 32.12, respectively. Finally, the morphology and membrane structure of the membrane were evaluated with infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile strength test.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Sridhar S, Smitha B, Ramakrishna M, Aminabhavi TM (2006) Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. J Membr Sci 280:202–209. https://doi.org/10.1016/j.memsci.2006.01.019

    Article  CAS  Google Scholar 

  2. Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation membranes. Chem Eng Technol 36:1838–1846. https://doi.org/10.1002/ceat.201300342

    Article  CAS  Google Scholar 

  3. Teodorescu M, Bercea M, Morariu S (2018) Miscibility study on polymer mixtures in dilute solution. Colloids Surf A 559:325–333. https://doi.org/10.1016/j.colsurfa.2018.09.062

    Article  CAS  Google Scholar 

  4. Roy S, Singha N (2017) Polymeric nanocomposite membranes for next generation pervaporation process: Strategies, challenges and future prospects. Membranes 7:53

    Article  Google Scholar 

  5. Darvell BW (2018) Chapter 3 – Polymers. In: Darvell BW (ed) Materials science for dentistry, 10th edn. Woodhead Publishing, Sawston, pp 70–91

    Chapter  Google Scholar 

  6. Robeson LM, Liu Q, Freeman BD, Paul DR (2015) Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. J Membr Sci 476:421–431. https://doi.org/10.1016/j.memsci.2014.11.058

    Article  CAS  Google Scholar 

  7. Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation. Sep Purif Technol 200:177–190. https://doi.org/10.1016/j.seppur.2018.02.038

    Article  CAS  Google Scholar 

  8. Sethu Lakshmi MB, Francis BS, Kumar A (2018) Chapter 17-Introduction to gas transport through polymer membranes. In: Thomas S, Wilson RS, Kumar A, George SC (eds) Transport properties of polymeric membranes. Elsevier, Amsterdam, pp 349–361

    Chapter  Google Scholar 

  9. Rahman MM, Filiz V, Shishatskiy S, Abetz C, Georgopanos P, Khan M, Neumann S, Abetz V (2015) Influence of poly(ethylene glycol) segment length on CO2 permeation and stability of polyactive membranes and their nanocomposites with PEG POSS. ACSAppl Mat Inter 7:12289–12298

    Article  CAS  Google Scholar 

  10. Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 37:39–51

    Article  CAS  Google Scholar 

  11. Akbarian I, Fakhar A, Ameri E, Sadeghi M (2018) Gas-separation behavior of poly(ether sulfone)–poly(ethylene glycol) blend membranes. J Appl Polym Sci 135:46845. https://doi.org/10.1002/app.46845

    Article  CAS  Google Scholar 

  12. Li J, Wang S, Nagai K, Nakagawa T, Mau AWH (1998) Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes. J Membr Sci 138:143–152. https://doi.org/10.1016/S0376-7388(97)00212-3

    Article  CAS  Google Scholar 

  13. Mani S, Khare R (2018) Effect of chain flexibility and interlayer interactions on the local dynamics of layered polymer systems. Macromolecules 51:576–588. https://doi.org/10.1021/acs.macromol.7b01519

    Article  CAS  Google Scholar 

  14. Semsarzadeh MA, Sadeghi M, Barikani M (2008) Effect of chain extender length on gas permeation properties of polyurethane membranes. Iran Polym J 17(6):431–440

    CAS  Google Scholar 

  15. Semsarzadeh MA, Sadeghi M, Barikani M (2008) Effect of polyol and chain extender length on the gas separation properties of polyurethane. IPJ 17:431–440

    CAS  Google Scholar 

  16. Alias SS, Harun Z, Shohur MF (2019) Effect of monovalent and divalent ions in non-solvent coagulation bath-induced phase inversion on the characterization of a porous polysulfone membrane. Polym Bull. https://doi.org/10.1007/s00289-019-02689-z

    Article  Google Scholar 

  17. Kalantari K, Moradihamedani P, Ibrahim NA, Abdullah AHB, Afifi ABM (2018) Polysulfone mixed-matrix membrane incorporating talc clay particles for gas separation. Polym Bull 75:3723–3738. https://doi.org/10.1007/s00289-017-2234-5

    Article  CAS  Google Scholar 

  18. Boroglu MS, Gurkaynak MA (2011) Fabrication and characterization of silica modified polyimide–zeolite mixed matrix membranes for gas separation properties. Polym Bull 66:463–478. https://doi.org/10.1007/s00289-010-0286-x

    Article  CAS  Google Scholar 

  19. Sridhar S, Veerapur RS, Patil MB, Gudasi KB, Aminabhavi TM (2007) Matrimid polyimide membranes for the separation of carbon dioxide from methane. J Appl Polym Sci 106:1585–1594. https://doi.org/10.1002/app.26306

    Article  CAS  Google Scholar 

  20. Sridhar S, Smitha B, Mayor S, Prathab B, Aminabhavi TM (2007) Gas permeation properties of polyamide membrane prepared by interfacial polymerization. J Mater Sci 42:9392–9401. https://doi.org/10.1007/s10853-007-1813-5

    Article  CAS  Google Scholar 

  21. Wang Y, Darensbourg DJ (2018) Carbon dioxide-based functional polycarbonates: metal catalyzed copolymerization of CO2 and epoxides. Coord Chem Rev 372:85–100. https://doi.org/10.1016/j.ccr.2018.06.004

    Article  CAS  Google Scholar 

  22. Motokucho S, Yamada H, Suga Y, Morikawa H, Nakatani H, Urita K, Moriguchi I (2018) Synthesis of an aliphatic hyper-branched polycarbonate and determination of its physical properties for solid polymer electrolyte use. Polymer 145:194–201. https://doi.org/10.1016/j.polymer.2018.05.010

    Article  CAS  Google Scholar 

  23. Motealleh B, Huang F, Largier TD, Khan W, Cornelius CJ (2019) Solution-blended sulfonated polyphenylene and branched poly(arylene ether sulfone): synthesis, state of water, surface energy, proton transport, and fuel cell performance. Polymer 160:148–161. https://doi.org/10.1016/j.polymer.2018.11.045

    Article  CAS  Google Scholar 

  24. Largier T, Huang F, Kahn W, Cornelius CJ (2019) Poly(phenylene) synthesized using Diels-Alder chemistry and its sulfonation: sulfonate group complexation with metal counter-ions, physical properties, and gas transport. J Membr Sci 572:320–331. https://doi.org/10.1016/j.memsci.2018.11.024

    Article  CAS  Google Scholar 

  25. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM (2007) Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf, A 297:267–274. https://doi.org/10.1016/j.colsurfa.2006.10.054

    Article  CAS  Google Scholar 

  26. Sridhar S, Aminabhavi TM, Mayor SJ, Ramakrishna M (2007) Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite PEBAX membranes. Ind Eng Chem Res 46:8144–8151. https://doi.org/10.1021/ie070114k

    Article  CAS  Google Scholar 

  27. Sridhar S, Smitha B, Suryamurali R, Aminabhavi TM (2008) Synthesis, characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane. Des Monomers Polym 11:17–27. https://doi.org/10.1163/156855508X292392

    Article  CAS  Google Scholar 

  28. Wang N, Xu P, Wu C, Wu R, Shou D (2019) Preparation of micro-cell membrane chromatographic columns with polyvinyl alcohol-modified polyether ether ketone tube as cellular membrane carrier. J Chromatogr B 1104:102–108. https://doi.org/10.1016/j.jchromb.2018.11.014

    Article  CAS  Google Scholar 

  29. Mohr JM, Paul DR, Tullos GL, Cassidy PE (1991) Gas transport properties of a series of poly(ether ketone) polymers. Polymer 32:2387–2394. https://doi.org/10.1016/0032-3861(91)90079-X

    Article  CAS  Google Scholar 

  30. Andrady AL, Llorente MA, Mark JE (1991) Some dynamic mechanical properties of unimodal and bimodal networks of poly(dimethylsiloxane). Polym Bull 26:357–362. https://doi.org/10.1007/BF00587981

    Article  CAS  Google Scholar 

  31. Ishihara R, Yamaguchi Y, Tanabe K, Makino Y, Nishio K (2019) Preparation of Pt/WO3-coated polydimethylsiloxane membrane for transparent/flexible hydrogen gas sensors. Mater Chem Phys 226:226–229. https://doi.org/10.1016/j.matchemphys.2018.12.052

    Article  CAS  Google Scholar 

  32. Sridhar S, Aminabhavi TM, Ramakrishna M (2007) Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. J Appl Polym Sci 105:1749–1756. https://doi.org/10.1002/app.24628

    Article  CAS  Google Scholar 

  33. Houde AY, Kulkarni SS, Kharul UK, Charati SG, Kulkarni MG (1995) Gas permeation in polyarylates: effects of polarity and intersegmental mobility. J Membr Sci 103:167–174. https://doi.org/10.1016/0376-7388(95)00324-6

    Article  CAS  Google Scholar 

  34. Patil MB, Patil SA, Veerapur RS, Aminabhavi TM (2007) Novel Poly(vinyl alcohol)-tetraethoxysilane hybrid matrix membranes as oxygen barriers. J Appl Polym Sci 104:273–278. https://doi.org/10.1002/app.25589

    Article  CAS  Google Scholar 

  35. Kim JH, Ha SY, Nam SY, Rhim JW, Baek KH, Lee YM (2001) Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membr Sci 186:97–107. https://doi.org/10.1016/S0376-7388(00)00670-0

    Article  CAS  Google Scholar 

  36. Chakrabarty B, Ghoshal AK, Purkait MK (2008) SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Colloid Interface Sci 320:245–253. https://doi.org/10.1016/j.jcis.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  37. Sadeghi M, PourafshariChenar M, Rahimian M, Moradi S, Dehaghani AHS (2008) Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. J Appl Polym Sci 110:1093–1098. https://doi.org/10.1002/app.28740

    Article  CAS  Google Scholar 

  38. Yave W, Car A, Peinemann K-V, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183. https://doi.org/10.1016/j.memsci.2009.04.049

    Article  CAS  Google Scholar 

  39. Pritchard C (1995) Polymeric gas separation membranes, by R. E. Kesting and A. K. Fritzsche. Wiley Interscience, New York, 1993. Pp. xi + 416, price £49.60, US$68.95. ISBN 0–471–56931–3. Polymer International 36: 102–102. https://doi.org/10.1002/pi.1995.210360116

  40. Mars J, Wali M, Delille R, Dammak F (2015) Low velocity impact behavior of glass fibre-reinforced polyamide. In: Multiphysics modelling and simulation for systems design and monitoring. Springer, Cham, pp 469–479

  41. Panapitiya N, Wijenayake S, Nguyen D, Karunaweera C, Huang Y, Balkus K, Musselman I, Ferraris J (2016) Compatibilized immiscible polymer blends for gas separations. Materials (Basel, Switzerland) 9:643. https://doi.org/10.3390/ma9080643

    Article  CAS  Google Scholar 

  42. Ibrahim B, Alghazali K (2010) Influence of polymer blending on mechanical and thermal properties. Mod Appl Sci. https://doi.org/10.5539/mas.v4n9p157

    Article  Google Scholar 

  43. Sugimura A, Asai M, Matsunaga T, Akagi Y, Sakai T, Noguchi H, Shibayama M (2013) Mechanical properties of a polymer network of Tetra-PEG gel. Polym J 45:300–306

    Article  CAS  Google Scholar 

  44. Uemura T, Kaseda T, Sasaki Y, Inukai M, Toriyama T, Takahara A, Jinnai H, Kitagawa S (2015) Mixing of immiscible polymers using nanoporous coordination templates. Nat Commun 6:7473. https://doi.org/10.1038/ncomms8473

    Article  PubMed  PubMed Central  Google Scholar 

  45. Runt J Huang J (2002) Polymer blends and copolymers. In: Applications to polymers and plastics, pp 273–294

  46. Sanaeepur H, Ebadi Amooghin A, Moghadassi A, Kargari A, Moradi S, Ghanbari D (2012) A novel acrylonitrile–butadiene–styrene/poly(ethylene glycol) membrane: preparation, characterization, and gas permeation study. Polym Adv Technol 23:1207–1218. https://doi.org/10.1002/pat.2031

    Article  CAS  Google Scholar 

  47. Robeson LM (1999) Polymer membranes for gas separation. Curr Opin Solid State Mat Sci 4:549–552

    Article  CAS  Google Scholar 

  48. Lin H, Freeman BD (2006) Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 39:3568–3580. https://doi.org/10.1021/ma051686o

    Article  CAS  Google Scholar 

  49. Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281:130–138. https://doi.org/10.1016/j.memsci.2006.03.030

    Article  CAS  Google Scholar 

  50. Han J, Lee W, Choi JM, Patel R, Min B-R (2010) Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: precipitation kinetics, morphology and gas separation. J Membr Sci 351:141–148. https://doi.org/10.1016/j.memsci.2010.01.038

    Article  CAS  Google Scholar 

  51. Bos A, Pünt IGM, Wessling M, Strathmann H (1999) CO2-induced plasticization phenomena in glassy polymers. J Membr Sci 155:67–78. https://doi.org/10.1016/S0376-7388(98)00299-3

    Article  CAS  Google Scholar 

  52. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Membr Sci 239:105–117. https://doi.org/10.1016/j.memsci.2003.08.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Hassanzadeganroudsari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirian, D., Salahshoori, I., Sadeghi, M. et al. Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polym. Bull. 77, 5529–5552 (2020). https://doi.org/10.1007/s00289-019-03031-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03031-3

Keywords