Skip to main content
Log in

Preparation, characterization and properties of liquid natural rubber with low non-rubber content via photodegradation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Photodegradation of natural rubber (NR) latex produced low molecular weight liquid natural rubber (LNR). During the photodegradation, organic materials particularly surfactants and non-rubbers also decomposed. The decomposition of surfactants and non-rubbers could influence the stability of the latex. Anionic and non-ionic surfactants were used to stabilize NR latex during the photodegradation. It was found that the anionic surfactant gave better resistance to oxidizing agent and UV radiation compared to the non-ionic surfactant. Hence, better stability of the NR latex was observed throughout the reaction. The zeta potential of NR latex increased during photodegradation due to the presence of negatively charged substances. The nitrogen content, which represents protein in NR decreased after photodegradation, whilst the phosphate content, which represents phospholipid head increased in the serum. This indicates the occurrence of decomposition of the non-rubber compounds in NR. The molecular weight of NR latex stabilized with anionic surfactant, sodium dodecyl sulphate, reduced from 544 × 103 to 19 × 103 g/mol after 48 h of reaction. SEM micrographs showed the latex particles of LNR were spherical and larger compared to NR. FTIR and NMR spectra confirmed the presence of telechelic hydroxyl and carbonyl groups, resulted from the chain cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Perrella FW, Gaspari AA (2002) Natural rubber latex protein reduction with an emphasis on enzyme treatment. Methods 27:77–86. https://doi.org/10.1016/S1046-2023(02)00055-5

    Article  CAS  PubMed  Google Scholar 

  2. Sakdapipanich J, Rojruthai P (2012) Molecular Structure of Natural Rubber and Its Characteristics Based on Recent Evidence. In: Biotechnology—molecular studies and novel applications for improved quality of human life, pp 213–238

  3. Kawahara S, Kakubo T, Sakdapipanich J et al (2000) Characterization of fatty acids linked to natural rubber—role of linked fatty acids on crystallization of the rubber. Polymer (Guildf) 41:7483–7488. https://doi.org/10.1016/S0032-3861(00)00098-7

    Article  CAS  Google Scholar 

  4. Sansatsadeekul J, Sakdapipanich J, Rojruthai P (2011) Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111:628–634. https://doi.org/10.1016/j.jbiosc.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  5. Sakdapipanich J, Kalah R, Nimpaiboon A, Ho CC (2015) Influence of mixed layer of proteins and phospholipids on the unique film formation behavior of Hevea natural rubber latex. Colloids Surf A Physicochem Eng Asp 466:100–106. https://doi.org/10.1016/j.colsurfa.2014.10.056

    Article  CAS  Google Scholar 

  6. Nawamawat K, Sakdapipanich J, Ho CC et al (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surfaces A Physicochem Eng Asp 390:157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021

    Article  CAS  Google Scholar 

  7. Yunyongwattanakorn J, Tanaka Y, Kawahara S et al (2003) Effect of non-rubber components on storage hardening and gel formation of natural rubber during accelerated storage under various conditions. Rubber Chem Technol 76:1228–1240. https://doi.org/10.5254/1.3547799

    Article  CAS  Google Scholar 

  8. Baharulrazi N, Nor HM, Ali WKW (2015) Hydroxyl terminated natural rubber (HTNR) as a binder in solid rocket propellant. Appl Mech Mater 695:174–178. https://doi.org/10.4028/www.scientific.net/AMM.695.174

    Article  CAS  Google Scholar 

  9. Wayakron Phetphaisit C, Bumee R, Namahoot J et al (2013) Polyurethane polyester elastomer: innovative environmental friendly wood adhesive from modified PETs and hydroxyl liquid natural rubber polyols. Int J Adhes Adhes 41:127–131. https://doi.org/10.1016/j.ijadhadh.2012.11.007

    Article  CAS  Google Scholar 

  10. Kaenhin L (2012) Synthesis and characterization of waterborne polyurethane adhesive from hydroxyl terminated natural rubber. J Rubber Res 15:217–229

    CAS  Google Scholar 

  11. Kwanming K, Klinpituksa P, Waehamad W-A (2008) Ultraviolet curing of acrylated liquid natural rubber for surface coating application. Songklanakarin J Sci Technol 311:49–55

    Google Scholar 

  12. Nair NR, Thomas S, Mathew NM (1997) Liquid natural rubber as a viscosity modifier in nitrile rubber processing. Polym Int 42:289–300. https://doi.org/10.1002/(SICI)1097-0126(199703)42:3%3c289:AID-PI684%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  13. Karnika De Silva KG, Silva E, Vitharana LP (1996) Depolymerized natural rubber as a processing aid. J Rubber Res Inst Sri Lanka 77:38–53

    Google Scholar 

  14. Dahlan M, Khairul Zaman MD, Ibrahim A (2000) Liquid natural rubber (LNR) as a compatibilizer in NR/LLDPE blends. J Appl Polym Sci 78:1776–1782. https://doi.org/10.1002/1097-4628(20001205)78:10%3c1776:AID-APP90%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  15. Bijarimi M, Ahmad S, Rasid R (2014) Melt blends of poly (lactic acid)/natural rubber and liquid epoxidised natural rubber. J Rubber Res 17:57–68

    Google Scholar 

  16. Panwiriyarat W, Saetung N, Badawy H et al (2012) Natural rubber: an old material for new applications. In: The fall 182nd technical meeting of the ACS rubber division, Cincinnati, OH

  17. Saetung A, Kaenhin L, Klinpituksa P et al (2012) Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. J Appl Polym Sci 124:2741–2752. https://doi.org/10.1002/app.35318

    Article  CAS  Google Scholar 

  18. Nair MNR, Sukumar P (2010) Mechanical properties and fractography of block copolymers based on NR and MDI-based polyurethanes. Polym Bull 65:83–96. https://doi.org/10.1007/s00289-010-0251-8

    Article  CAS  Google Scholar 

  19. Ravindran T, Nayar MRG, Francis DJ (1986) A novel method for the preparation of hydroxyl terminated liquid natural rubber. Macromol Chem Rapid Commun 7:159–163

    Article  CAS  Google Scholar 

  20. Ravindran T, Nayar MRG, Francis DJ (1988) Production of hydroxyl-terminated liquid natural rubber—mechanism of photochemical depolymerization and hydroxylation. J Appl Polym Sci 35:1227–1239. https://doi.org/10.1002/app.1988.070350509

    Article  CAS  Google Scholar 

  21. Ibrahim A, Zuriati Z (1989) Photodegradation of natural rubber. Sains Malays 18:99–109

    Google Scholar 

  22. Kok CM (1985) The effect of molecular weight on the physical properties of UV degraded natural rubber. Eur Polym J 21:37–40

    Article  CAS  Google Scholar 

  23. Abdullah I (1994) Liquid natural rubber: preparation and application. Prog Pac Polym Sci 3:351–365. https://doi.org/10.1007/978-3-642-78759-1_30

    Article  Google Scholar 

  24. Tasakorn P, Amatyakul W (2008) Photochemical reduction of molecular weight and number of double bonds in natural rubber film. Korean J Chem Eng 25:1532–1538. https://doi.org/10.1007/s11814-008-0252-6

    Article  CAS  Google Scholar 

  25. Sakdapipanich J, Kowitteerawut T, Kawahara S, Tanaka Y (2001) Depolymerisation of highly purified natural rubber. I. Metal-catalysed oxidation of deproteinised natural rubber. J Rubber Res 4:1–10

    CAS  Google Scholar 

  26. Sakdapipanich J, Suksawad P, Insom K, Kawahara S (2005) Preparation of functionalized low molecular weight natural rubber latex using solid nanometric TiO2 film as a photocatalyst. Rubber Chem Technol 72:597–605

    Article  Google Scholar 

  27. Tehrani-Bagha AR, Nikkar H, Menger FM, Holmberg K (2012) Degradation of two persistent surfactants by UV-enhanced ozonation. J Surfactants Deterg 15:59–66. https://doi.org/10.1007/s11743-011-1271-6

    Article  CAS  Google Scholar 

  28. Brown W, Zhao J (1993) Adsorption of sodium dodecyl sulfate on polystyrene latex particles using dynamic light scattering and zeta potential measurements. Macromolecules 26:2711–2715. https://doi.org/10.1021/ma00063a012

    Article  CAS  Google Scholar 

  29. Chen SF (1979) Adsorption of sodium dodecyl sulfate on natural rubber latex particles and determination of specific surface area of the particles. Rubber Chem Technol 54:124–133

    Article  Google Scholar 

  30. Chen SF, Ng CS (1984) The natural higher fatty acid soaps in natural rubber latex and their effect on the mechanical stability of the latex. Rubber Chem Technol 57:243–253

    Article  CAS  Google Scholar 

  31. Ho CC (1989) Changes in electrokinetic properties of natural rubber latex after surface chemical modifications experimental materials. Colloid Polym Sci 647:643–647

    Article  Google Scholar 

  32. Olmez-Hanci T, Arslan-Alaton I, Basar G (2011) Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology. J Hazard Mater 185:193–203. https://doi.org/10.1016/j.jhazmat.2010.09.018

    Article  CAS  PubMed  Google Scholar 

  33. Silva Da S S, Osvaldo C-F, De Barros Neto EL et al (2014) Photodegradation of non-ionic surfactant with different ethoxy groups in aqueous effluents by the photo-Fenton process. Environ Technol (United Kingdom) 35:1556–1564. https://doi.org/10.1080/09593330.2013.873485

    Article  CAS  Google Scholar 

  34. Pelizzetti E, Minero C, Maurino V et al (1989) Photocatalytic degradation of nonylphenol ethoxylated surfactants. Environ Sci Technol 23:1380–1385. https://doi.org/10.1021/es00069a008

    Article  CAS  Google Scholar 

  35. Tangpakdee J, Tanaka Y (1997) Characterization of sol and gel in Hevea natural rubber. Rubber Chem Technol 70:707–713

    Article  CAS  Google Scholar 

  36. Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 6:1851–1857. https://doi.org/10.1021/bm058003x

    Article  CAS  PubMed  Google Scholar 

  37. Sakdapipanich J (2013) Current study on structural characterization and unique film formation of Hevea brasiliensis. Natural rubber latex. Adv Mater Res 844:498–501. https://doi.org/10.4028/www.scientific.net/AMR.844.498

    Article  CAS  Google Scholar 

  38. Bussière PO, Gardette JL, Lacoste J, Baba M (2005) Characterization of photodegradation of polybutadiene and polyisoprene: chronology of crosslinking and chain-scission. Polym Degrad Stab 88:182–188. https://doi.org/10.1016/j.polymdegradstab.2004.02.013

    Article  CAS  Google Scholar 

  39. Sakdapipanich J, Kowitteerawut T, Suchiva K, Tanaka Y (1999) Long chain branching and mechanism controlling molecular weight in Hevea rubber. Rubber Chem Technol 72:712–720

    Article  CAS  Google Scholar 

  40. Greesh N, Ray SS (2016) Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex. Colloid Polym Sci 294:157–170. https://doi.org/10.1007/s00396-015-3743-0

    Article  CAS  Google Scholar 

  41. Phinyocheep P (2014) Chemical modification of natural rubber (NR) for improved performance. In: Chemistry, manufacture and applications of natural rubber, pp 68–118

  42. Guillet JE (1972) Fundamental processes in the U.V. degradation and stabilization of polymers. Pure Appl Chem 30:135–144. https://doi.org/10.1351/pac197230010135

    Article  CAS  Google Scholar 

  43. Li X, Chen C, Zhao J (2001) Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17:4118–4122. https://doi.org/10.1021/la010035s

    Article  CAS  Google Scholar 

  44. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2:1–32. https://doi.org/10.1186/2193-1801-2-398

    Article  CAS  Google Scholar 

  45. Ranby B (1993) Basic reactions in the photodegradation of some important polymers. J Macromol Sci Pure Appl Chem A30:583–594. https://doi.org/10.1080/10601329308021247

    Article  Google Scholar 

  46. Panwiriyarat W, Tanrattanakul V, Pilard JF et al (2013) Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J Polym Environ 21:807–815. https://doi.org/10.1007/s10924-012-0567-6

    Article  CAS  Google Scholar 

  47. Panwiriyarat W, Tanrattanakul V, Jean-Francois P, Khaokong C (2011) Synthesis and characterization of block copolymer from natural rubber, toluene-2,4-diisocyanate and poly(epsilon-caprolactone) diol-based polyurethane. Eco-Materials Process Des Xii, vol 695, pp 316–319. https://doi.org/10.4028/www.scientific.net/MSF.695.316

  48. Saetung A, Rungvichaniwat A, Campistron I et al (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117:1279–1289. https://doi.org/10.1002/app.31907

    Article  CAS  Google Scholar 

  49. Khai DM, Nhan PD (2016) Effect of some experimental factors on preparation of liquid natural rubber. J Sci Technol 54:563–569. https://doi.org/10.15625/0866-708X/54/4/7420

    Article  Google Scholar 

  50. Rodrigues MA, De Paoli MA (1985) The chemical effects of photo-oxidation on isoprene rubber. Eur Polym J 21:15–23. https://doi.org/10.1016/0014-3057(85)90058-8

    Article  CAS  Google Scholar 

  51. Dahham OS, Hamzah R, Abu Bakar M et al (2018) Synthesis and structural studies of an epoxidized natural rubber/titania (ENR-50/TiO2) hybrid under mild acid conditions. Polym Test 65:10–20. https://doi.org/10.1016/j.polymertesting.2017.11.005

    Article  CAS  Google Scholar 

  52. Ibrahim S, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers (Basel) 6:2928–2941. https://doi.org/10.3390/polym6122928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge technical and financial supports from Malaysian Rubber Board under SEAC Grant No. S16FCB0605 and Universiti Sains Malaysia under FRGS Grant No. 203.PBAHAN.6071350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadras Othman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S., Othman, N. & Yusof, N.H. Preparation, characterization and properties of liquid natural rubber with low non-rubber content via photodegradation. Polym. Bull. 78, 559–575 (2021). https://doi.org/10.1007/s00289-019-03030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03030-4

Keywords

Navigation