Skip to main content
Log in

The effect of curing temperatures on the thermal behaviour of new polybenzoxazine-modified epoxy resin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, hydroxyl end functional group benzoxazine monomer (BZ-OH) was synthesized from ethanolamine, bisphenol-A and paraformaldehyde. The monomer was analysed and confirmed by Fourier transform infrared, and (1H and 13C) nuclear magnetic resonance techniques, respectively. The benzoxazine (10% by weight) was incorporated into a (50:50) weight ratio of epoxy resin and its hardener. This mixture was first cured at room temperature for 24 h and then post-cured at temperatures; 90, 120, 150, 180, 200 and 220 °C, respectively. Thermal gravimetric analysis was employed to study the effect of the different curing temperatures on the thermal properties of the benzoxazine/epoxy mixture. The results showed an overall improvement in the thermal stability of the samples as the curing temperature is increased. However, the product cured at 220 °C depicted a better thermal behaviour, with a decomposition temperature in the range of 258–532 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tesoro G (1988) Epoxy resins-chemistry and technology, 2nd Edition, Clayton A. May, Ed., Marcel Dekker, New York, 1988, 1,288 pp. Price: $195.00. J Polym Sci Part C: Polym Lett 26(12):539–539

    Google Scholar 

  2. Campana C et al (2018) Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Compos Part A: Appl Sci Manuf 107:171–179

    CAS  Google Scholar 

  3. Al Shaabania YA (2019) Wear and friction properties of epoxy-polyamide blend nanocomposites reinforced by MWCNTs. Energy Procedia 157:1561–1567

    CAS  Google Scholar 

  4. Chou TY, Tsai H-Y, Yip MC (2019) Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer. Compos Part A: Appl Sci Manuf 118:30–40

    CAS  Google Scholar 

  5. Jiang M et al (2018) Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone. Polym Test 69:02–309

    Google Scholar 

  6. Kishi H, Yamada K, Kimura J (2019) Control of nanostructures and fracture toughness of epoxy/acrylic block copolymer blends using in situ manipulation of the epoxy matrix reaction type. Polymer 176:89–100

    CAS  Google Scholar 

  7. Siebert AR (1984) Morphology and dynamic mechanical behavior of rubber-toughened epoxy resins. In: Rubber-modified thermoset resins, vol 208. American Chemical Society, pp 179–191

  8. An H et al (2019) Thermal behaviors of nanoparticle reinforced epoxy resins for microelectronics packaging. Microelectron Reliab 93:39–44

    CAS  Google Scholar 

  9. Arash B, Exner W, Rolfes R (2019) Viscoelastic damage behavior of fiber reinforced nanoparticle-filled epoxy nanocomposites: multiscale modeling and experimental validation. Compos Part B: Eng 174:107005

    CAS  Google Scholar 

  10. Lila, M.K., et al. (2018) Effect of environmental conditioning on natural fiber reinforced epoxy composites. Mater Today: Proc 5(9, Part 1):17006–17011.

    CAS  Google Scholar 

  11. Okhawilai M, Hiziroglu S, Rimdusit S (2018) Measurement of ballistic impact performance of fiber reinforced polybenzoxazine/polyurethane composites. Measurement 130:198–210

    Google Scholar 

  12. Sarikaya E, Çallioğlu H, Demirel H (2019) Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos Part B: Eng 167:461–466

    CAS  Google Scholar 

  13. Burke, W.J. (1949) 3,4-Dihydro-1,3,2H-benzoxazines. Reaction of p-substituted Phenols with N,N-Dimethylolamines. J Am Chem Soc 71(2):609–612.

    CAS  Google Scholar 

  14. Zhang K, Shang Z (2019) Chapter 5—Polybenzoxazine: a smart polymer for novel environmental and catalytic applications. In: Li S, et al. (eds) Smart polymer catalysts and tunable catalysis. Elsevier, Amsterdam, pp 95–114

    Google Scholar 

  15. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32(11):1344–1391

    CAS  Google Scholar 

  16. Ishida H, Low HY (1997) A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 30(4):1099–1106

    CAS  Google Scholar 

  17. Takeichi T, Kawauchi T, Agag T (2008) High performance polybenzoxazines as a novel type of phenolic resin. Polym J 40:1121

    CAS  Google Scholar 

  18. Yagci Y, Kiskan B, Ghosh NN (2009) Recent advancement on polybenzoxazine—a newly developed high performance thermoset. J Polym Sci Part A: Polym Chem 47(21):5565–5576

    CAS  Google Scholar 

  19. Ishida H, P.F. (2017) Advanced and emerging polybenzoxazine science and technology. Elsevier, Amsterdam

    Google Scholar 

  20. Ishida H, Allen DJ (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37(20):4487–4495

    CAS  Google Scholar 

  21. Mittal KL, Pizzi A (2018) Handbook of adhesive technology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  22. Rimdusit S, Jubsilp C, Tiptipakorn S (2013) Polybenzoxazine alloys. In: Rimdusit S, Jubsilp C, Tiptipakorn S (eds) Alloys and composites of polybenzoxazines: properties and applications. Springer, Singapore, pp 29–46

    Google Scholar 

  23. Vengatesan MR et al (2012) SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications. J Mater Chem 22(15):7559–7566

    CAS  Google Scholar 

  24. Gilbert E et al (2018) Design of thermosetting polymeric systems based on benzoxazines modified with maleic anhydride. J Appl Polym Sci 135(17):46183

    Google Scholar 

  25. Asiri AM et al (2015) Enhanced coating properties of Ni-La-ferrites/epoxy resin nanocomposites. Polym Compos 36(10):1875–1883

    CAS  Google Scholar 

  26. Asiri AM et al (2013) Effect of NiLaxFe2− xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos Part B: Eng 51:11–18

    CAS  Google Scholar 

  27. Hussein MA, Abu-Zied BM, Asiri AM (2016) The role of mixed graphene/carbon nanotubes on the coating performance of G/CNTs/Epoxy resin nanocomposites. Int J Electrochem Sci 11:7644–7659

    CAS  Google Scholar 

  28. Hussein MA, Abu-Zied BM, Asiri AM (2018) Fabrication of EPYR/GNP/MWCNT carbon-based composite materials for promoted epoxy coating performance. RSC Adv 8(42):23555–23566

    CAS  Google Scholar 

  29. Ishida H, Agag T (2011) Handbook of benzoxazine resins. Elsevier, Amsterdam

    Google Scholar 

  30. Jubsilp C, Ramsiri B, Rimdusit S (2012) Effects of aromatic carboxylic dianhydrides on thermomechanical properties of polybenzoxazine-dianhydride copolymers. Polym Eng Sci 52(8):1640–1648

    CAS  Google Scholar 

  31. Han L et al (2017) Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated, 15N isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations. J Phys Chem A 121(33):6269–6282

    CAS  PubMed  Google Scholar 

  32. Chutayothin P, Ishida H (2009) 31P NMR spectroscopy in benzoxazine model compounds and benzoxazine chemistry–main chain and end group studies. Eur Polym J 45(5):1493–1505

    CAS  Google Scholar 

  33. Ning X, Ishida H (1994) Phenolic materials via ring-opening polymerization of benzoxazines: Effect of molecular structure on mechanical and dynamic mechanical properties. J Polym Sci Part B: Polym Phys 32(5):921–927

    CAS  Google Scholar 

  34. Ramos VD et al (2005) Modification of epoxy resin: a comparison of different types of elastomer. Polym Test 24(3):387–394

    CAS  Google Scholar 

  35. Mimura K, Ito H, Fujioka H (2000) Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer 41(12):4451–4459

    CAS  Google Scholar 

  36. Deng P et al (2018) Solidifying process and flame retardancy of epoxy resin cured with boron-containing phenolic resin. Appl Surf Sci 427:894–904

    CAS  Google Scholar 

  37. Shukla S et al (2016) Kinetics behind a strategy for modulation of sustainable benzoxazines: experimental study and its theoretical verification. Macromol Chem Phys 217(12):1342–1353

    CAS  Google Scholar 

  38. Deshpande N et al (2019) Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: regioselectivity and mechanism. J Catal 370:46–54

    CAS  Google Scholar 

  39. Zhang J et al (2019) Toughening benzoxazine/epoxy thermosets through control of interfacial interactions and morphologies by hyperbranched polymeric ionic liquids. J Mol Liq 291:111251

    Google Scholar 

  40. Park S-J, Jin F-L (2004) Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stab 86(3):515–520

    CAS  Google Scholar 

  41. Rajesh Kumar S, Dhanasekaran J, Krishna Mohan S (2015) Epoxy benzoxazine based ternary systems of improved thermo-mechanical behavior for structural composite applications. RSC Adv 5(5):3709–3719

    CAS  Google Scholar 

  42. Peng C et al (2018) Synthesis and application of a benzoxazine-type phosphorus-containing monomer on epoxy/benzoxazine copolymer: thermal stability and compatibility with liquid oxygen. Polym Degrad Stab 157:131–142

    CAS  Google Scholar 

  43. Liu Y et al (2011) Thermal degradation behavior and kinetics of polybenzoxazine based on bisphenol-S and aniline. Thermochim Acta 523(1):170–175

    CAS  Google Scholar 

  44. Ertas Y, Uyar T (2016) Cross-linked main-chain polybenzoxazine nanofibers by photo and thermal curing; stable at high temperatures and harsh acidic conditions. Polymer 84:72–80

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), king Abdulaziz University, Jeddah, under Grant No. (DG-042–130-1440). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulrahman Musa or Khalid A. Alamry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, A., Alamry, K.A. & Hussein, M.A. The effect of curing temperatures on the thermal behaviour of new polybenzoxazine-modified epoxy resin. Polym. Bull. 77, 5439–5449 (2020). https://doi.org/10.1007/s00289-019-03026-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03026-0

Keywords

Navigation