Synthesis of high-performance triphenylamine-based polyfluorenes via C–N coupling reaction: thermal and photoelectric properties

Abstract

Aromatic high-performance triphenylamine-based polyfluorenes (PTPAFs) have been successfully constructed by palladium-catalyzed polycondensation reaction. The chemical structures of the resulting PTPAFs are confirmed by means of Fourier-transform infrared spectroscopy and nuclear magnetic resonance, and the testing results showed a good agreement with the proposed structures. The resulted polymers show excellent solubility, high thermal stability with the decomposition temperatures (Td5%) over 320 °C and the glass transition temperatures (Tg) over 305 °C. The PTPAF1 and the PTPAF2 exhibit the enhanced high occupied molecular orbital (HOMO) energy levels (− 3.93 eV, − 4.00 eV, respectively) and the depressed low unoccupied molecular orbital (LUMO) energy levels (− 0.99 eV, − 1.41 eV, respectively). Owing to their special structures, PTPAFs showed encouraging photonic luminescence and good electroactivity and could be used as a potential light source in the blue region.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Nguyen T-P (2011) Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf Coat Technol 206:742–752

    CAS  Article  Google Scholar 

  2. 2.

    Cao WR, Li J, Chen HZ et al (2014) Transparent electrodes for organic optoelectronic devices: a review. J Photon Energy 4(1):040990

    Article  Google Scholar 

  3. 3.

    Levenson R, Liang J, Rossier C et al (1995) Advances in organic polymer-based optoelectronics

  4. 4.

    Fink J, Nücker N, Scheerer B et al (1987) Electronic structure of undoped and doped polyphenylenevinylene 79–83

  5. 5.

    Zhang W, Wu X, Yan W et al (2017) High-performance polythiothene film covalently bonded to ITO electrode: synthesis and electrochromic properties. Sol Energy Mater Sol Cells 177:15–22

    Article  Google Scholar 

  6. 6.

    Xie LH, Yin CR, Lai WY et al (2012) Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 37(9):1192–1264

    CAS  Article  Google Scholar 

  7. 7.

    Jung BJ, Shim H-K, Hwang D-H (2014) Chapter 5 polyfluorenes. Conjugated polymers: a practical guide to synthesis. The Royal Society of Chemistry, vol 2014, pp 87–112

  8. 8.

    Zhang R, Feng X, Zhang R et al (2019) Breaking parallel orientation of rods via a dendritic architecture toward diverse supramolecular structures. Angew Chem 131(34):12005–12011

    Article  Google Scholar 

  9. 9.

    Lin Z, Yang X, Xu H et al (2017) Topologically directed assemblies of semiconducting sphere-rod conjugates. J Am Chem Soc 139(51):18616–18622

    CAS  Article  Google Scholar 

  10. 10.

    Fukuda M, Sawada K, Yoshino K (1989) Fusible conducting poly(9-alkylfluorene) and poly(9,9-dialkylfluorene) and their characteristics. Jpn J Appl Phys 28(2):8

    Google Scholar 

  11. 11.

    Fukuda M, Sawada K, Yoshino K (1993) Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. J Polym Sci, Part A Polym Chem 31(10):2465–2471

    CAS  Article  Google Scholar 

  12. 12.

    Uchida M, Ohmori Y, Morishima C et al (1993) Visible and blue electroluminescent diodes utilizing poly(3-alkylthiophene)s and poly(alkylfluorene)s. Synth Met 57(1):4168–4173

    CAS  Article  Google Scholar 

  13. 13.

    Bernius MT, Inbasekaran M, Brien JO et al (2000) Progress with light-emitting polymers. Adv Mater 12(23):1737–1750

    CAS  Article  Google Scholar 

  14. 14.

    Grice AW, Bradley D, Bernius M et al (1998) High brightness and efficiency blue light-emitting polymer diodes. Appl Phys Lett 73:629–631

    CAS  Article  Google Scholar 

  15. 15.

    Liu B, Huang W (2002) Novel deep blue fluorescent fluorene-based copolymer containing hole-transporting arylamine segments. Thin Solid Films 417(1–2):206–210

    CAS  Article  Google Scholar 

  16. 16.

    Wang X, Zhao L, Shao S et al (2014) Poly(spirobifluorene)s containing nonconjugated diphenylsulfone moiety: toward blue emission through a weak charge transfer effect. Macromolecules 47(9):2907–2914

    CAS  Article  Google Scholar 

  17. 17.

    Li N, Zong L, Wu Z et al (2018) Compatibilization effect of aminated poly(phthalazinone ether ketone)s in carbon fiber-reinforced copoly(phthalazinone ether sulfone)s composites. Polym Compos 39(11):4139–4147

    CAS  Article  Google Scholar 

  18. 18.

    Li N, Hu Z, Huang Y (2018) Preparation and characterization of nanocomposites of poly(p-phenylene benzobisoxazole) with aminofunctionalized graphene. Polym Compos 39(8):2969–2976

    CAS  Article  Google Scholar 

  19. 19.

    Wei W, Chang G, Xu Y et al (2018) An indole-based conjugated microporous polymer: a new and stable lithium storage anode with high capacity and long life induced by cation-p interactions and a N-rich aromatic structure. J Mater Chem A 2018(6):18794–18798

    Article  Google Scholar 

  20. 20.

    Chang GJ, Shang ZF, Yu T et al (2016) Rational design of a novel indole-basedmicroporous organic polymer: enhanced carbondioxide uptake via local dipolep interactions. J Mater Chem A 4:2517–2523

    CAS  Article  Google Scholar 

  21. 21.

    Lee W, Kim GH, Ko SJ et al (2015) Semicrystalline D-A copolymers with different chain curvature for applications in polymer optoelectronic devices. Macromolecules 47(5):1604–1612

    Article  Google Scholar 

  22. 22.

    Ruiz-Castillo P, Leffler Buchwald S (2016) Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116(19):12564–12649

    CAS  Article  Google Scholar 

  23. 23.

    Chang G, Luo X, Zhang L et al (2007) Synthesis of novel high-performance polymers via Pd-catalyzed amination of dibromoarenes with primary aromatic diamines. Macromolecules 40(24):8625–8630

    CAS  Article  Google Scholar 

  24. 24.

    Al-Hussaini AS (2014) Synthesis and characterization of new thermally stable polymers as new high-performance engineering plastics. High Perform Polym 26(2):166–174

    Article  Google Scholar 

  25. 25.

    Workman J (2001) The handbook of organic compounds

  26. 26.

    Yeh KM, Chen Y (2008) Vinyl polymer containing 1,4-distyrylbenzene chromophores: synthesis, optical, electrochemical properties and its blend with PVK and Ir(ppy) 3. Synth Met 158(10):0–416

    Article  Google Scholar 

  27. 27.

    Redecker M, Bradley DDC, Inbasekaran M et al (1998) Nondispersive hole transport in an electroluminescent polyfluorene. Appl Phys Lett 73(11):1565–1567

    CAS  Article  Google Scholar 

  28. 28.

    Miteva T, Meisel A, Knoll W et al (2001) Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv Mater 13(8):565–570

    Article  Google Scholar 

  29. 29.

    Hu L-W, Liang L, Yang Y et al (2018) Green-emitting polyfluorenes containing hexylthiophen-dibenzothiophene-S, S-dioxide unit with large two-photon absorption cross section. Chin J Polym Sci 36(04):546–554

    CAS  Article  Google Scholar 

  30. 30.

    Li N, Wu Z, Yang X et al (2018) One-pot strategy for covalent construction of POSS-modified silane layer on carbon fiber to enhance interfacial properties and anti-hydrothermal aging behaviors of PPBES composites. J Mater Sci 53(24):16303–16317

    CAS  Article  Google Scholar 

  31. 31.

    Chang G, Yang L, Yang J et al (2018) High-performance pH-switchable supramolecular thermosets via cation–π interactions. Adv Mater 30(7):1704234

    Article  Google Scholar 

  32. 32.

    Yang P, Yang L, Wang Y et al (2019) An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions. J Mater Chem A 7:531–539

    CAS  Article  Google Scholar 

  33. 33.

    Li N, Yang X, Bao F et al (2019) Improved mechanical properties of copoly(phthalazinone ether sulphone)s composites reinforced by multiscale carbon fibre/graphene oxide reinforcements: a step closer to industrial production. Polymers 11(2):237

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. U1233202 and No. 51175434); the Youth Research Foundation of the Civil Aviation Flight University of China (No. Q2019-106), the Laboratory Research Foundation for the State Key Laboratory of Environment-friendly Energy Materials (No. 17kffk03).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi Xu or Yi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yang, N., He, Q. et al. Synthesis of high-performance triphenylamine-based polyfluorenes via C–N coupling reaction: thermal and photoelectric properties. Polym. Bull. 77, 5145–5154 (2020). https://doi.org/10.1007/s00289-019-03002-8

Download citation

Keywords

  • High-performance polymer
  • Palladium-catalyzed amination reaction
  • Triphenylamine
  • Polyfluorene