Crystallization study of shellac investigated by differential scanning calorimetry


The amount of crystallinity and non-isothermal crystallization kinetics of shellac have been studied using differential scanning calorimetry and X-ray diffraction, respectively. High-resolution transmission electron microscope has been used to obtain the particle size and distribution. Fourier transform infrared spectroscopy is used to determine chemical compositions of shellac. Polarized optical microscopy images have been used to see the growth of spherulites at different temperatures. Two-step crystallizations (C1 and C2) were observed for shellac. Both modified Avrami and combined Avrami–Ozawa model have been applied to determine the parameters for crystallization kinetics of shellac. Different cooling rates ranging from 5 to 15 °C min−1 have been used to study the non-isothermal kinetics of shellac. The Avrami exponents for the two crystallizations are determined from the modified Avrami analysis. The values of these exponents are in the range of 2.29–2.54 for both the crystallizations C1 and C2. The rate of crystallization for C1 is greater than that for C2 as observed from modified Avrami and combined Avrami–Ozawa method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Limmatvapirat S, Limmatvapirat C, Luangtana-anan M, Nunthanid J, Oguchi T, Tozuka Y, Yamamoto K, Puttipipatkhachorn S (2004) Modification of physicochemical and mechanical properties of shellac by partial hydrolysis. Int J Pharm 278:41–49.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Derry J (2012) A study on the processing methods of shellac and the analysis of selected physical and chemical characteristics. Dissertation, University of Oslo

  3. 3.

    Sharma SK, Shukla SK, Vaid DN (1983) Shellac-structure, characteristics and modification. Def Sci J 33:261–271

    CAS  Article  Google Scholar 

  4. 4.

    Baboo B, Goswami DN (2010) Processing, chemistry and application of lac. Chandu Press, New Delhi

    Google Scholar 

  5. 5.

    Singh AN, Upadhye AB, Mhaskar VV, Dev S, Pol AV, Naik VG (1974) Chemistry of lac resin-VII: pure lac resin-3: structure. Tetrahedron 30:3689–3693

    CAS  Article  Google Scholar 

  6. 6.

    Embuscado ME, Huber KC (2009) Edible films and coatings for food applications. Springer, New York

    Google Scholar 

  7. 7.

    Du Y, Wang L, Mu R, Wang Y, Li Y, Wu D, Wu C, Pang J (2019) Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. Int J Biol Macromol 131:36–42.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Soradech S, Nutthanid J, Limmatvapirat S, Luangtana-anan M (2017) Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control 73:1310–1317.

    CAS  Article  Google Scholar 

  9. 9.

    Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M (2007) Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm 67:690–698.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Gately NM, Kennedy JE (2017) The development of a melt-extruded shellac carrier for the targeted delivery of probiotics to the colon. Pharmaceutics 9(4):38.

    CAS  Article  PubMed Central  Google Scholar 

  11. 11.

    Labuschagne PW, Naicker B, Kalombo L (2016) Micronization, characterization and in vitro dissolution of shellac from PGSS supercritical CO2 technique. Int J Pharm 499:205–216.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chattopadhyay S (2011) Introduction to lac and lac culture. Annapurna Press, Jharkhand

    Google Scholar 

  13. 13.

    Lakshminarayanan TR, Gupta MP (1975) X-ray diffraction studies on shellac/melamine resin blends. J Appl Polym Sci 19:3385–3386

    CAS  Article  Google Scholar 

  14. 14.

    Mondal A, Sohel MA, SenGupta A (2018) Calorimetric studies on Indian lac structure. In: Proceedings of international conference on RAMSB 2018; Mangalore University, Mangalore, Jan 23–25

  15. 15.

    Goswami DN, Saha SK (2000) An investigation of the melting properties of different forms of lac by differential scanning calorimeter. Surf Coat Int 7:334–336

    Article  Google Scholar 

  16. 16.

    Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviours of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132.

    CAS  Article  Google Scholar 

  17. 17.

    Ahmed J (2017) Glass transition and phase transitions in food and biological materials. Wiley-Blackwell, Hoboken

    Google Scholar 

  18. 18.

    Liang H, Xie F, Guo F, Chen B, Luo F, Jin Z (2008) Non-isothermal crystallization behavior of poly(ethylene terephthalate)/poly(trimethyleneterephthalate) Blends. Polym Bull 60:115–127.

    CAS  Article  Google Scholar 

  19. 19.

    Freire E, Bianchi O, Martins JN, Monterio EEC, Forte MMC (2012) Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers. J Non-Cryst Solids 358:2674–2681.

    CAS  Article  Google Scholar 

  20. 20.

    Lorenzo MLD, Sajkiewicz P, Pietra PL, Gradys A (2006) Irregularly shaped DSC exotherms in the analysis of polymer crystallization. Polym Bull 57:713–721.

    CAS  Article  Google Scholar 

  21. 21.

    Lin X, Zhang H, Ke M, Xiao L, Zuo D, Qian Q, Chen Q (2014) Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites. Polym Bull.

    Article  Google Scholar 

  22. 22.

    Sarkar PC, Shrivastava AK (1997) FTIR spectroscopy of lac resin and its derivatives. Pigment Resin Technol 26(6):378–381

    Article  Google Scholar 

  23. 23.

    Sarkar PC, Kumar KK (2001) An investigation into the different forms of lac resin using FT-IR and diffuse reflectance spectroscopy. Pigment Resin Technol 30(1):25–33

    CAS  Article  Google Scholar 

  24. 24.

    Sarkar PC, Shrivastava AK (2000) FT-IR spectroscopic studies on degradation of lac resin. Part I: thermal degradation. Pigment Resin Technol 29(1):23–28

    CAS  Article  Google Scholar 

  25. 25.

    Derrick MR, Stulik D, Landry JM (1999) Infrared spectroscopy in conservation science. Getty Trust, Los Angeles

    Google Scholar 

  26. 26.

    Rubio AL, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89(9):761–768.

    Article  Google Scholar 

  27. 27.

    Patel AR, Schatteman D, Vos WHD, Dewettinck K (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv 3:5324–5327.

    CAS  Article  Google Scholar 

  28. 28.

    Langhe D (2017) Fractionated crystallization in polymer blends. In: Thomas S, Mohammed Arif P, Gowd EB, Kalarikkal N (eds) Crystallization in multiphase polymer systems, 1st edn. Elsevier, Amsterdam, pp 239–267

    Google Scholar 

  29. 29.

    Zhao C, Zhang P, Yi L, Xu F, Wang X, Yong J (2008) Study on the non-isothermal crystallization kinetics of novel polyamide 6/silica nanocomposites containing epoxy resins. Polym Test 27:412–419.

    CAS  Article  Google Scholar 

  30. 30.

    Supaphol P, Dangseeyun N, Srimoaon P (2004) Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Test 23:175–185.

    CAS  Article  Google Scholar 

  31. 31.

    Wang L, Zhang F, Bai Y, Ding L (2016) Non-isothermal melt-crystallization kinetics of poly (ethylene terephthalate-co-sodium-5-sulfo-iso-phthalate). Thermocimica Acta 645:43–49.

    CAS  Article  Google Scholar 

  32. 32.

    Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-Isothermal Conditions. Macromol Chem Phys 208:1250–1264.

    CAS  Article  Google Scholar 

  33. 33.

    Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7:1103–1112.

    CAS  Article  Google Scholar 

  34. 34.

    Avrami M (1940) Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224.

    CAS  Article  Google Scholar 

  35. 35.

    Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 19:1142–1144

    CAS  Article  Google Scholar 

  36. 36.

    Haoa W, Yang W, Cai H, Huang Y (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533.

    CAS  Article  Google Scholar 

  37. 37.

    Liu T, Mo Z, Wang S, Zhang H (1979) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575.

    Article  Google Scholar 

  38. 38.

    Layachi A, FrihiD Satha H, Seguela R, Gherib S (2016) Non-isothermal crystallization kinetics of polyamide 66/glass fibres/carbon black composites. J Therm Anal Calorim 124:1319–1329.

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge SERB/DST sponsored Project No. SB/S2/CMP-027/2014 for the DSC facility and DST-FIST PROGRAMME for XRD facility. The authors are thankful to Prof. M. Goswami of BARC, India, for FTIR measurement of shellac.

Author information



Corresponding author

Correspondence to Asmita SenGupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Sohel, M.A., Mohammed, A.P. et al. Crystallization study of shellac investigated by differential scanning calorimetry. Polym. Bull. 77, 5127–5143 (2020).

Download citation


  • Shellac
  • FTIR
  • XRD
  • Polarized optical microscopy
  • DSC