Skip to main content
Log in

Chitosan–polyaniline–copper(II) oxide hybrid composite for the removal of methyl orange dye

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan–polyaniline–copper(II) oxide (Ch–PANI–CuO) nanocomposite has been synthesized using batch adsorption method. It was characterized using UV–Vis, scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared (FTIR) and transmission electron microscopy (TEM). The SEM and TEM showed that the surface of the nanocomposite was rough and porous with pleats, which is probably responsible for better dye adsorption. The maximum percentage of dye degradation was found to be 94.6% for methyl orange dye. The desorption study and FTIR results confirmed the presence of hydroxyl and amino functional groups. The results clearly indicate that the polymer matrix could be used as an adsorbent for the removal of methyl orange from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 506–507:9–20

    Article  PubMed  Google Scholar 

  2. Ochoa P (2016) Wastewater stabilisation ponds system: global sensitivity analysis on network design. Chem Eng Trans 50:187–192

    Google Scholar 

  3. Jing F, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166(2–3):904–910

    Google Scholar 

  4. Guin JP, Bhardwaj YK, Varshney L (2017) Mineralization and biodegradability enhancement of methyl orange dye by an effective advanced oxidation process. Appl Radiat Isotopes 122:153–157

    Article  Google Scholar 

  5. Gilja V, Novaković K, Travas-Sejdic J, Hrnjak-Murgić Z, Roković MK, Žic M (2017) Stability and synergistic effect of polyaniline/TiO2-photocatalysts in degradation of azo dye in wastewater. Nanomaterials 7(12):E412

    Article  PubMed  Google Scholar 

  6. Tara-Lunga-Mihali M, Plesu N, Kellenberger A, Ilia G (2015) Adsorption of an azo dye on polyaniline/niobium substrate. Int J Electrochem Sci 10:7643–7659

    CAS  Google Scholar 

  7. Gnanasekaran L, Hemamalini R, Naushad M (2018) Efficient photocatalytic degradation of toxic dyes using nanostructured TiO2/polyaniline nanocomposite. Desalin Water Treat 108:322–328

    Article  CAS  Google Scholar 

  8. Dai J, Chen X, Yang H (2017) Visible light photocatalytic degradation of dyes by a new polyaniline/β-Bi2O3 composite. Inorg Nano-Metal Chem 47(9):1364–1368

    Article  CAS  Google Scholar 

  9. Rasouli N, Somayea A (2018) Enhanced visible light photocatalytic decolorization of azo dye using magnetic PANI/CuFe2O4/ZnO. J Anal Pharm Res 7(1):00197

    Article  Google Scholar 

  10. Chakraborty P, Kothari A, Nagarajan R (2018) Highly ordered polyaniline as an efficient dye remover. Adsorp Sci Technol 36(1–2):429–440

    Article  CAS  Google Scholar 

  11. Chauhan NPS (2019) Functionalized polyaniline and composites. In: Mozafari M, Chauhan NPS (eds) Fundamentals and emerging applications of polyaniline. Elsevier, Amsterdam, pp 177–201

    Chapter  Google Scholar 

  12. Sultana S, Ahmad N, Faisal SM, Owais M, Sabir S (2017) Synthesis characterisation and potential applications of polyaniline/chitosan–Ag–nano-biocomposite. IET Nanobiotechnol 11:835–842

    Article  Google Scholar 

  13. Shahabuddin S, Sarih NM, Ismail FH, Shahid MM, Huang NM (2015) Synthesis of chitosan grafted-polyaniline/Co3O4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv 5(102):83857–83867

    Article  CAS  Google Scholar 

  14. Herrera MU, Futalan CM, Gapusan R, Balela MDL (2018) Removal of methyl orange dye and copper(II) ions from aqueous solution using polyaniline-coated kapok (Ceibapentandra) fibers. Water Sci Technol 78(5):1137–1147

    Article  PubMed  CAS  Google Scholar 

  15. Mohammadi B, Pirsa S, Alizadeh M (2019) Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polym Polym Compos https://doi.org/10.1177/0967391119851439

  16. Pasela BR, Castillo AP, Simon R, Pulido MT, Mana-ay H, Abiquibil MR, Montecillo R, Thumanu K, Tumacder DV, Taaca KL (2019) Synthesis and characterization of acetic acid-doped polyaniline and polyaniline–chitosan composite. Biomimetics 4(15):1–16. https://doi.org/10.3390/biomimetics4010015

    Article  CAS  Google Scholar 

  17. Moutsatsou P, Coopman K, Georgiadou S (2019) Chitosan & conductive PANI/chitosan composite nanofibers—evaluation of antibacterial properties. Curr Nanomater 4(1):6–20. https://doi.org/10.2174/1573413714666181114110651

    Article  CAS  Google Scholar 

  18. Pandiselvi K, Thambidurai S (2016) Synthesis of adsorption cum photocatalytic nature of polyaniline-ZnO/chitosan composite for removal of textile dyes. Desalin Water Treat 57(18):8343–8357

    Article  CAS  Google Scholar 

  19. Azhar FF, Olad A, Salehi R (2014) Fabrication and characterization of chitosan gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym 17(7):654–667

    Article  Google Scholar 

  20. Vellakkat M, Hundekkal D (2016) Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors. Mater Res Express 3:015502. https://doi.org/10.1088/2053-1591/3/1/015502

    Article  CAS  Google Scholar 

  21. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166

    Article  CAS  Google Scholar 

  22. Ibrahim M, Mahmoud AA, Osman O, Refaat A, El-Sayed ESM (2010) Molecular spectroscopic analysis of nano-chitosan blend as biosensor. Spectrochim Acta A 77:802–806

    Article  Google Scholar 

  23. Chauhan NPS, Ameta R, Ameta R, Ameta SC (2011) Thermal and conducting behavior of emeraldine base (EB) form of polyaniline (PANI). Ind J Chem Technol 18:118–122

    CAS  Google Scholar 

  24. Kayani ZN, Umer M, Riaz S, Naseem S (2015) Characterization of copper oxide nanoparticles fabricated by the sol-gel method. J Electron Mater 44:3704. https://doi.org/10.1007/s11664-015-3867-5

    Article  CAS  Google Scholar 

  25. Zheng H, Du YM, Yu JH, Huang RH, Zhang LN (2001) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80(13):2558–2565

    Article  CAS  Google Scholar 

  26. Yavuz AG, Uygun A, Bhethanabotla VR (2010) Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydr Polym 81(3):712–719

    Article  CAS  Google Scholar 

  27. Khan R, Dhayal M (2009) Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect ochratoxin-A. Biosens Bioelectron 24(6):1700–1705

    Article  PubMed  CAS  Google Scholar 

  28. Varghese MYKJG, Kittur AA, Rachipudi PS (2010) Synthesis, characterization and pervaporation performance of chitosan-g-polyanilinemembranes for the dehydration of isopropanol. J Membr Sci 364(1):111–121

    Article  CAS  Google Scholar 

  29. RezaSaeb M, Zarrintaj P, Khandelwal P, Chauhan NPS (2019) Synthetic route of polyaniline (I): conventional oxidative polymerization. In: Mozafari M, Chauhan NPS (eds) Book fundamentals and emerging applications of polyaniline. Elsevier, Amsterdam, pp 17–41

    Google Scholar 

  30. Farshi Azhar F, Olad A, Mirmohseni A (2014) Development of novel hybrid nanocomposites based on natural biodegradable polymer–montmorillonite/polyaniline: preparation and characterization. Polym Bull 71:1591. https://doi.org/10.1007/s00289-014-1143-0

    Article  CAS  Google Scholar 

  31. Ramedani A, Yazdanpanah A, Abrishamkar A, Nasrollahi M, Milan PB, Moghadam ZS, Chauhan NPS, Sefat F, Mozafari M (2019) Advanced characterization tools for PANI and PANI-clay nanocomposites. In: Fundamentals and emerging applications of polyaniline, pp 203–226

  32. Xiong S, Wang Y, Lu Y, Li H, Liu J, Li S, Qiu Z, Gong M, Wu B, Chu J, Wang X, Zhang R (2018) Enhancing the electrochromic performances of polyaniline film through incorporating polyaniline nanofibers synthesized by interfacial polymerization approach. Polym Bull 75(8):3427–3443

    Article  CAS  Google Scholar 

  33. Taş R, Can M, Sarı H (2019) The chemical synthesis and characterizations of silver-doped polyaniline: role of silver–solvent interactions. Bull, Polym. https://doi.org/10.1007/s00289-019-02833-9

    Book  Google Scholar 

  34. Lukasiewicz M, Ptaszek A, Koziel L, Achremowicz B, Grzesik M (2007) Carboxymethylcellulose/polyaniline blends. Synthesis and properties. Polym Bull 58:281–288. https://doi.org/10.1007/s00289-006-0638-8

    Article  CAS  Google Scholar 

  35. Yamaguchi I, Kinugawa S, Wang A (2019) Synthesis and chemical properties of pyrophosphoric acid-doped polyaniline and copolymers of o-phenylenediamine with aniline and 3,4-ethylenedioxythiophene. Polym Bull 76:4035. https://doi.org/10.1007/s00289-018-2590-9

    Article  CAS  Google Scholar 

  36. Silva RC, Sarmento MV, Nogueira FA, Tonholo J, Mortimer RJ, Faezc R, Ribeiro AS (2014) Enhancing the electrochromic response of polyaniline films by the preparation of hybrid materials based on polyaniline, chitosan and organically modified clay. RSC Adv 4(29):14948–14955

    Article  CAS  Google Scholar 

  37. Karthik R, Meenakshi S (2014) Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. Int J Biol Macromol 67:210–219

    Article  PubMed  CAS  Google Scholar 

  38. Prakash V, Diwan RK, Niyogi UK (2005) Characterization of synthesized copper oxide nanopowders and their use in nanofluids for enhancement of thermal conductivity. Indian J Pure Appl Phys 53:753–758

    Google Scholar 

  39. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24(3):779–789

    Article  CAS  Google Scholar 

  40. Zilberman M, Titelman G, Siegmann A, Haba Y, Narkis M, Alperstein D (1997) Conductive blends of thermally dodecyl benzene sulfonic acid-doped polyaniline with thermoplastic polymers. J Appl Polym Sci 66(2):243–253

    Article  CAS  Google Scholar 

  41. Pandiselvi K, Thambidurai S (2013) Synthesis of porous chitosan–polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids Surf B Biointerfaces 108:229–238

    Article  Google Scholar 

  42. Hameed BH (2008) Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater 154(1–3):204–212

    Article  PubMed  CAS  Google Scholar 

  43. Dawood S, Sen TK (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res 46(6):1933–1946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF, Punjab University, Chandigarh, for characterization of the sample for SEM, TEM, FTIR and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakshit Ameta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, B.S., Chauhan, N.P.S., Rawal, M.K. et al. Chitosan–polyaniline–copper(II) oxide hybrid composite for the removal of methyl orange dye. Polym. Bull. 77, 4833–4850 (2020). https://doi.org/10.1007/s00289-019-02994-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02994-7

Keywords

Navigation