Skip to main content
Log in

Catalytic performance and antimicrobial activity of Mg(OH)2/MgO colloidal nanoparticles in alkyd resin nanocomposite derived from palm oil

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Colloidal Mg(OH)2/MgO nanoparticles were successfully produced in glycerol medium in the presence of hydrazine and subsequently was characterized by XRD. The as-prepared colloidal suspension in glycerol was used for the glycerolysis reaction with palm oil succeeded by polyesterification reaction with phthalic anhydride to prepare the palm oil-based alkyd resin nanocomposite where the Mg(OH)2/MgO nanoparticles catalysed the reactions. The well-dispersion of Mg(OH)2/MgO nanoparticles in the reaction mixture formed a stable suspension which effectively elevated the rate of reaction of both alcoholysis and polyesterification as compared to conventional NaOH catalysed reactions. The optimum reaction condition of the catalysts was observed at 0.04 wt% of Mg(OH)2/MgO. Alkyd resin nanocomposite formation was verified through FTIR, 13C NMR and 1H NMR. The presence of the Mg(OH)2/MgO nanoparticles in the resin matrix significantly improved the antimicrobial activity as evidenced by Kirby–Bauer Method. Thereby, the formulation of Mg(OH)2/MgO nanoparticles in glycerol medium was proved to be an effective route as compared to traditional NaOH homogeneous base catalyzed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alam M, Akram D, Sharmin E, Zafar F, Ahmad S (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7:469–479. https://doi.org/10.1016/j.arabjc.2013.12.023

    Article  CAS  Google Scholar 

  2. Boruah M, Gogoi P, Adhikari B, Dolui SK (2012) Preparation and characterization of Jatropha Curcas oil based alkyd resin suitable for surface coating. Prog Org Coat 74:596–602. https://doi.org/10.1016/j.porgcoat.2012.02.007

    Article  CAS  Google Scholar 

  3. Işeri-Çaǧlar D, Baştürk E, Oktay B, Kahraman MV (2014) Preparation and evaluation of linseed oil based alkyd paints. Prog Org Coat 77:81–86. https://doi.org/10.1016/j.porgcoat.2013.08.005

    Article  CAS  Google Scholar 

  4. Hlaing NN, Oo MM (2008) Manufacture of alkyd resin from castor oil. World Acad Sci Eng Technol 48:155–161

    Google Scholar 

  5. Noureddini H, Harkey D, Gutsman M (2004) A continuous process for the glycerolysis of soybean oil. J Am Oil Chem Soc 81:203–207. https://doi.org/10.1007/s11746-004-0882-y

    Article  CAS  Google Scholar 

  6. Chiplunkar PP, Pratap AP (2016) Utilization of sunflower acid oil for synthesis of alkyd resin. Prog Org Coat 93:61–67. https://doi.org/10.1016/j.porgcoat.2016.01.002

    Article  CAS  Google Scholar 

  7. Ong HR, Khan MMR, Ramli R, Rahman MW, Yunus RM (2015) Tailoring base catalyzed synthesis of palm oil based alkyd resin through CuO nanoparticles. RSC Adv 5:95894–95902. https://doi.org/10.1039/C5RA19575F

    Article  CAS  Google Scholar 

  8. Ikhuoria EU, Maliki M, Okieimen FE, Aigbodion AI, Obaze EO, Bakare IO (2007) Synthesis and characterisation of chlorinated rubber seed oil alkyd resins. Prog Org Coat 59:134–137. https://doi.org/10.1016/j.porgcoat.2007.02.001

    Article  CAS  Google Scholar 

  9. Menkiti* MC, Onukwuli OD (2011) Utilization potentials of rubber seed oil for the production of alkyd resin using variable base oil lengths. N Y Sci J 4:51–59

    Google Scholar 

  10. Hofland A (2012) Alkyd resins: from down and out to alive and kicking. Prog Org Coat 73:274–282. https://doi.org/10.1016/j.porgcoat.2011.01.014

    Article  CAS  Google Scholar 

  11. Lozano-Escárcega RJ, Sánchez-Anguiano MG, Serrano T, Chen JY, Gómez I (2019) Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym Bull 76:4157–4188. https://doi.org/10.1007/s00289-018-2576-7

    Article  CAS  Google Scholar 

  12. Ferretti CA, Olcese RN, Apesteguía CR, Di Cosimo JI (2009) Heterogeneously-catalyzed glycerolysis of fatty acid methyl esters: reaction parameter optimization. Ind Eng Chem Res 48:10387–10394. https://doi.org/10.1021/ie9004783

    Article  CAS  Google Scholar 

  13. Ferretti CA, Soldano A, Apesteguía CR, Di Cosimo JI (2010) Monoglyceride synthesis by glycerolysis of methyl oleate on solid acid–base catalysts. Chem Eng J 161:346–354. https://doi.org/10.1016/j.cej.2009.07.041

    Article  CAS  Google Scholar 

  14. Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ (2010) Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89:1818–1825. https://doi.org/10.1016/j.fuel.2009.12.023

    Article  CAS  Google Scholar 

  15. Bartley JK, Xu C, Lloyd R, Enache DI, Knight DW, Hutchings GJ (2012) Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Appl Catal B Environ 128:31–38. https://doi.org/10.1016/j.apcatb.2012.03.036

    Article  CAS  Google Scholar 

  16. Corma A, Hamid S, Iborra S, Velty A (2005) Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J Catal 234:340–347. https://doi.org/10.1016/j.jcat.2005.06.023

    Article  CAS  Google Scholar 

  17. Ong HR, Khan MMR, Ramli R, Yunus RM, Rahman MW (2016) Glycerolysis of palm oil using copper oxide nanoparticles combined with homogeneous base catalyst. New J Chem 40:8704–8709. https://doi.org/10.1039/c6nj01461e

    Article  CAS  Google Scholar 

  18. Pilarska AA, Klapiszewski Ł, Jesionowski T (2017) Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: a review. Powder Technol 319:373–407. https://doi.org/10.1016/j.powtec.2017.07.009

    Article  CAS  Google Scholar 

  19. Halbus AF, Horozov TS, Paunov VN (2019) Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticles. Biomimetics 4:41. https://doi.org/10.3390/biomimetics4020041

    Article  PubMed Central  CAS  Google Scholar 

  20. Dong C, Song D, Cairney J, Maddan OL, He G, Deng Y (2011) Antibacterial study of Mg(OH)2 nanoplatelets. Mater Res Bull 46:576–582. https://doi.org/10.1016/j.materresbull.2010.12.023

    Article  CAS  Google Scholar 

  21. Anbarasan R, Ponprapakaran K, Harihara Subramani R, Baskaran R, Tung K-L (2019) Synthesis, characterization and catalytic activity of copolymer/metal oxide nanocomposites. Polym Bull 76:4117–4138. https://doi.org/10.1007/s00289-018-2591-8

    Article  CAS  Google Scholar 

  22. Ahmadian Y, Bakravi A, Hashemi H, Namazi H (2019) Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull 76:1967–1983. https://doi.org/10.1007/s00289-018-2477-9

    Article  CAS  Google Scholar 

  23. Mohsen RM, Morsi SMM, Selim MM, Ghoneim AM, El-Sherif HM (2019) Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym Bull 76:1–21. https://doi.org/10.1007/s00289-018-2348-4

    Article  CAS  Google Scholar 

  24. Singh D, Patidar P, Ganesh A, Mahajani S (2013) Esterification of oleic acid with glycerol in the presence of supported zinc oxide as catalyst. Ind Eng Chem Res 52:14776–14786. https://doi.org/10.1021/ie401636v

    Article  CAS  Google Scholar 

  25. Charpe RF, Lamdhade G, Agrawal RM, Charpe SD (2015) Synthesis and characterization of magnesium oxide nanoparticles with 1:1 molar ratio via liquid-phase method. Int J Appl Innov Eng Manag 4:141–145

    Google Scholar 

  26. Runk RH (1952) Preparation of oil modified glyceryl phthalate drying resins. investigation of the monoglyceride method. Ind Eng Chem 44:1124–1126. https://doi.org/10.1021/ie50509a054

    Article  CAS  Google Scholar 

  27. Ong HR, Ramli R, Khan MMR, Yunus RM (2016) The influence of CuO nanoparticle on non-edible rubber seed oil based alkyd resin preparation and its antimicrobial activity. Prog Org Coat 101:245–252. https://doi.org/10.1016/j.porgcoat.2016.08.017

    Article  CAS  Google Scholar 

  28. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  29. Auda SH, Mahrous GM, Ibrahim MA, Shazly GA, Salem-Bekhit MM (2017) Novel chlorhexidine dermal patches, preparation characterization and antimicrobial evaluation. Polym Bull 74:3995–4007. https://doi.org/10.1007/s00289-017-1935-0

    Article  CAS  Google Scholar 

  30. Soniya SR, Nair VM (2016) Synthesis and characterization of nanostructured Mg(OH)2 and MgO. Int J Sci Res 5:197–203

    Google Scholar 

  31. Ferretti CA, Fuente S, Ferullo R, Castellani N, Apesteguía CR, Di Cosimo JI (2012) Monoglyceride synthesis by glycerolysis of methyl oleate on MgO: catalytic and DFT study of the active site. Appl Catal A Gen 413–414:322–331. https://doi.org/10.1016/j.apcata.2011.11.025

    Article  CAS  Google Scholar 

  32. Bora MM, Gogoi P, Deka DC, Kakati DK (2014) Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Ind Crops Prod 52:721–728. https://doi.org/10.1016/j.indcrop.2013.11.012

    Article  CAS  Google Scholar 

  33. Goldsmith HA (1948) Alpha- and beta-hydroxyls of glycerol in preparation of alkyd resins. Ind Eng Chem 40:1205–1211. https://doi.org/10.1021/ie50463a009

    Article  CAS  Google Scholar 

  34. Aigbodion AI, Okieimen FE (2001) An investigation of the utilisation of African locustbean seed oil in the preparation of alkyd resins. Ind Crops Prod 1(13):29–34

    Article  Google Scholar 

  35. Oladipo GO, Eromosele IC, Folarin OM (2013) Formation and characterization of paint based on alkyd resin derivative of Ximenia americana (wild olive) seed oil. Environ Nat Resour Res 3:52. https://doi.org/10.5539/enrr.v3n3p52

    Article  Google Scholar 

  36. Chew KY, Tan WL, Abu Bakar NHH, Abu Bakar M (2017) Transesterification of palm cooking oil using barium-containing titanates and their sodium doped derivatives. Int J Energy Environ Eng 8:47–53. https://doi.org/10.1007/s40095-016-0222-4

    Article  CAS  Google Scholar 

  37. Assanvo EF, Gogoi P, Dolui SK, Baruah SD (2015) Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Ind Crops Prod 65:293–302. https://doi.org/10.1016/j.indcrop.2014.11.049

    Article  CAS  Google Scholar 

  38. Bora MM, Deka R, Ahmed N, Kakati DK (2014) Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Ind Crops Prod 61:106–114. https://doi.org/10.1016/j.indcrop.2014.06.048

    Article  CAS  Google Scholar 

  39. Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31:591–601. https://doi.org/10.1590/0104-6632.20140313s00002813

    Article  Google Scholar 

  40. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028. https://doi.org/10.1021/la104825u

    Article  PubMed  CAS  Google Scholar 

  41. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  42. Jeevanandam J, Chan YS, Danquah MK (2019) Evaluating the antibacterial activity of MgO nanoparticles synthesized from aqueous leaf extract. Med One 4:e190011. https://doi.org/10.20900/mo.20190011

    Article  Google Scholar 

  43. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686. https://doi.org/10.1021/la0202374

    Article  CAS  Google Scholar 

  44. Sawai J, Shiga H, Kojima H (2001) Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegrad 47:23–26. https://doi.org/10.1016/S0964-8305(00)00115-3

    Article  CAS  Google Scholar 

  45. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194. https://doi.org/10.1023/A:1008916209784

    Article  CAS  Google Scholar 

  46. Ferretti C, Apesteguía CR, Di Cosimo JI, Díez VK (2014) Catalysis. Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781782620037

    Book  Google Scholar 

  47. Giamello E, Murphy D, Garrone E, Zecchina A (1993) Formation of superoxide ions upon oxygen adsorption on magnesium-doped magnesium oxide: an EPR investigation. Spectrochim Acta Part A Mol Spectrosc 49:1323–1330. https://doi.org/10.1016/0584-8539(93)80040-H

    Article  Google Scholar 

  48. Duan J, Kasper DL (2011) Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology 21:401–409. https://doi.org/10.1093/glycob/cwq171

    Article  PubMed  CAS  Google Scholar 

  49. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta Biomembr 1758:994–1003. https://doi.org/10.1016/j.bbamem.2006.02.015

    Article  CAS  Google Scholar 

  50. Reuter M, Hayward NJ, Black SS, Miller S, Dryden DTF, Booth IR (2014) Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper? J R Soc Interface 11:20130850. https://doi.org/10.1098/rsif.2013.0850

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212. https://doi.org/10.1016/j.mseb.2009.12.007

    Article  CAS  Google Scholar 

  52. Sharma J, Sharma M, Basu S (2017) Synthesis of mesoporous MgO nanostructures using mixed surfactants template for enhanced adsorption and antimicrobial activity. J Environ Chem Eng 5:3429–3438. https://doi.org/10.1016/j.jece.2017.07.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Universiti Malaysia Pahang (UMP) for providing research Grant (RDU180355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Maksudur Rahman Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munusamy, T.D., Sarmin, S., Ong, H.R. et al. Catalytic performance and antimicrobial activity of Mg(OH)2/MgO colloidal nanoparticles in alkyd resin nanocomposite derived from palm oil. Polym. Bull. 77, 4571–4586 (2020). https://doi.org/10.1007/s00289-019-02993-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02993-8

Keywords

Navigation