Photoluminescence in non-conjugated polyelectrolyte films containing 7-hydroxy-flavylium cation


Chitosan–carboxymethylcellulose/flavylium salt (Ch–CMC/FS) films were obtained at different flavylium salt (FS) concentrations under acidic conditions in order to maintain de benzopyrylium form of the flavylium organic cation. Films were characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, UV–Vis diffuse reflectance (DRUV) and emission spectroscopy. Thermal properties were also recorded by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. FTIR and Raman spectra showed shifting of the carbonyl vibrations after addition of flavylium salt compound. Thermal stability prevailed even after addition of FS as was determined by TGA and DSC analysis. Ch–CMC/FS showed strong absorption in the visible part of the electromagnetic spectrum centred around λ = 450 nm. Luminescence profile after excitation at λ = 450 nm showed an emission centred around λ = 507 nm. FS appears to be chemically stabilized by the interaction with polyelectrolyte chains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Conzatti G, Faucon D, Castel M et al (2017) Alginate/chitosan polyelectrolyte complexes: a comparative study of the influence of the drying step on physicochemical properties. Carbohydr Polym 172:142–151.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Argüelles-Monal W, Peniche-Covas C (1988) Study of the interpolyelectrolyte reaction between chitosan and carboxymethyl cellulose. Makromol Chem Rapid Commun 9:693–697.

    Article  Google Scholar 

  4. 4.

    Liuyun J, Yubao L, Chengdong X (2009) A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I. Preparation and properties. J Mater Sci Mater Med 20:1645–1652.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhu S, Song Y, Shao J et al (2015) Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed 54:14626–14637.

    CAS  Article  Google Scholar 

  6. 6.

    Song J, Zhou H, Gao R et al (2018) Selective determination of Cr(VI) by glutaraldehyde cross-linked chitosan polymer fluorophores. ACS Sens 3:792–798.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Urreaga JM, de la Orden MU (2006) Chemical interactions and yellowing in chitosan-treated cellulose. Eur Polym J 42:2606–2616.

    CAS  Article  Google Scholar 

  8. 8.

    Choi I, Lee JY, Lacroix M, Han J (2017) Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem 218:122–128.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Bettini S, Valli L, Santino A et al (2012) Spectroscopic investigations, characterization and chemical sensor application of composite Langmuir–Schäfer films of anthocyanins and oligophenylenevinylene derivatives. Dyes Pigm 94:156–162.

    CAS  Article  Google Scholar 

  10. 10.

    Aguilar-Castillo BA, Sánchez-Bojorge NA, Chávez-Flores D et al (2018) Naphtyl- and pyrenyl-flavylium dyads: synthesis, DFT and optical properties. J Mol Struct 1155:414–423.

    CAS  Article  Google Scholar 

  11. 11.

    Rosca C, Popa MI, Lisa G, Chitanu GC (2005) Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan-carboxymethylcellulose complex. Carbohydr Polym 62:35–41.

    CAS  Article  Google Scholar 

  12. 12.

    Xie YL, Wang MJ, Yao SJ (2009) Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir 25:8999–9005.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48:993–999.

    CAS  Article  Google Scholar 

  14. 14.

    Zaja̧c A, Hanuza J, Wandas M, Dymińska L (2015) Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 134:114–120.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Taubner T, Synytsya A, Čopíková J (2015) Preparation of amidated derivatives of carboxymethylcellulose. Int J Biol Macromol 72:11–18.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Aswathy RG, Sivakumar B, Brahatheeswaran D et al (2012) Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol 03:254–261.

    CAS  Article  Google Scholar 

  17. 17.

    Golbaghi L, Khamforoush M, Hatami T (2017) Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: experimental, modeling, and optimization. Carbohydr Polym 174:780–788.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J 6:81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zhao Q, Qian J, An Q et al (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 333:68–78.

    CAS  Article  Google Scholar 

  20. 20.

    Appelqvist IAM, Cooke D, Gidley MJ, Lane SJ (1993) Thermal properties of polysaccharides at low moisture: 1—an endothermic melting process and water-carbohydrate interactions. Carbohydr Polym 20:291–299.

    CAS  Article  Google Scholar 

  21. 21.

    Yuan RB, Thompson D (1994) Sub-Tg thermal properties of amorphous waxy starch and its derivates. Carbohydr Polym 25:1–6.

    Article  Google Scholar 

  22. 22.

    Thiewes HJ, Steeneken PAM (1997) The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr Polym 32:123–130.

    CAS  Article  Google Scholar 

  23. 23.

    Yu HL, Feng ZQ, Zhang JJ et al (2018) The evaluation of proanthocyanidins/chitosan/lecithin microspheres as sustained drug delivery system. BioMed Res Int 2018:1–11. Article ID 9073420.

  24. 24.

    Zhang C, Ma Y, Zhao X, Mu J (2009) Influence of copigmentation on stability of anthocyanins from purple potato peel in both liquid state and solid state. J Agric Food Chem 57:9503–9508.

    CAS  Article  PubMed  Google Scholar 

Download references


GZG thanks to Consejo Nacional de Ciencia y Tecnología (CONACyT) for support (CB-2013-01-222847 and INFRA-2015-01-251400). ASEM thanks CONACyT for a postdoctoral scholarship. DEV acknowledges the support given by PRODEP (OF-178204) and CONACyT (Grant No. 207363). Thanks to Raúl Orozco-Mena from Universidad Nacional Autónoma de Chihuahua for the recording of Raman spectroscopy.

Author information



Corresponding authors

Correspondence to Laura Alicia Manjarrez-Nevárez or Gerardo Zaragoza-Galán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Estrada-Montaño, A.S., Espinobarro-Velázquez, D., Sauzameda, M. et al. Photoluminescence in non-conjugated polyelectrolyte films containing 7-hydroxy-flavylium cation. Polym. Bull. 77, 5051–5063 (2020).

Download citation


  • Flavylium salt
  • Chitosan
  • Carboxymethylcellulose
  • Polyelectrolyte
  • Fluorescence