Skip to main content

Advertisement

Log in

Post-polymerization reactivity of free radicals trapped in resin-based dental restorative materials by ESR spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The propagating and allylic free radicals generated when polymerizing dimethacrylate resin-based materials used in dentistry are detected by electron spin resonance (ESR) spectroscopy as a nine-line spectrum. This study aimed to probe their post-polymerization reactivity with a novel methodology to quantify these radicals separately. X-band ESR spectra were recorded from a photo-cure dental resin composite (~ 20 days) and a dual-cure resin cement (~ 15 days). Spectra simulations were applied to separate and determinate the contribution from each radical to the ESR signal according to the method presented. The decay curves of the free radicals were then obtained to probe their post-polymerization reactivity as function of composition and initiation mode (photo-cure and self-cure). The allylic radical’s post-polymerization half-life time was approximately twice than that of the propagating radical, independently the composition and the activation mode, indicating that their relative reactivity does not depend of these parameters. The methodology presented for individual quantification of free radicals showed to be adequate to probe the kinetics of the free radicals generated and trapped in resin-based dental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sideridou ID, Achilias DS (2005) Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res Part B Appl Biomater 74:617–626. https://doi.org/10.1002/jbm.b.30252

    Article  CAS  PubMed  Google Scholar 

  2. Leprince JG, Palin WM, Hadis MA et al (2013) Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 29:139–156. https://doi.org/10.1016/j.dental.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  3. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  4. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829. https://doi.org/10.1016/s0142-9612(01)00308-8

    Article  CAS  PubMed  Google Scholar 

  5. Salomão FM, Vicentin BLS, Contreras EFR et al (2015) The influence of a translucent fiberglass post on the polymerization of dual cure resin cement analyzed by electron paramagnetic resonance. Mater Res 18:1023–1028. https://doi.org/10.1590/1516-1439.022115

    Article  CAS  Google Scholar 

  6. Jakubiak J, Allonas X, Fouassier JP et al (2003) Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization. Polymer (Guildf) 44:5219–5226. https://doi.org/10.1016/s0032-3861(03)00568-8

    Article  CAS  Google Scholar 

  7. Ikemura K, Endo T (2010) A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dent Mater J 29:481–501. https://doi.org/10.4012/dmj.2009-137

    Article  CAS  PubMed  Google Scholar 

  8. Nie J, Andrzejewska E, Rabek JF et al (1999) Effect of peroxides and hydroperoxides on the camphorquinone-initiated photopolymerization. Macromol Chem Phys 200:1692–1701. https://doi.org/10.1002/(sici)1521-3935(19990701)200:7%3c1692:aid-macp1692%3e3.0.co;2-r

    Article  CAS  Google Scholar 

  9. Teshima W, Nomura Y, Tanaka N et al (2003) ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 24:2097–2103. https://doi.org/10.1016/s0142-9612(02)00636-1

    Article  CAS  PubMed  Google Scholar 

  10. Kwon TY, Bagheri R, Kim YK et al (2012) Cure mechanisms in materials for use in esthetic dentistry. J Investig Clin Dent 3:3–16. https://doi.org/10.1111/j.2041-1626.2012.00114.x

    Article  PubMed  Google Scholar 

  11. Truffier-Boutry D, Gallez XA, Demoustier-Champagne S et al (2003) Identification of free radicals trapped in solid methacrylated resins. J Polym Sci Part A Polym Chem 41:1691–1699. https://doi.org/10.1002/pola.10692

    Article  CAS  Google Scholar 

  12. Vicentin BLS, Salomão FM, Hoeppner MG, Di Mauro E (2016) Influence of geometrical configuration of a translucent fiberglass post on the polymerization of a dual cure resin cement analyzed by EPR spectroscopy. Appl Magn Reson 47:211–222. https://doi.org/10.1007/s00723-015-0740-x

    Article  CAS  Google Scholar 

  13. Anseth KS, Anderson KJ, Bowman CN (1996) Radical concentrations, environments, and reactivities during crosslinking polymerizations. Macromol Chem Phys 197:833–848. https://doi.org/10.1002/macp.1996.021970306

    Article  CAS  Google Scholar 

  14. Da Fontes AS, Vicentin BLS, Valezi DF et al (2014) A multifrequency (X-, Q-, and W-band) EPR and DFT study of a photopolymerizable dental resin. Appl Magn Reson 45:681–692. https://doi.org/10.1007/s00723-014-0546-2

    Article  CAS  Google Scholar 

  15. Vicentin BLS, Netto AM, Blümich B, Di Mauro E (2016) Identification of free radicals generated by different curing modes in a dental resin cement. Appl Magn Reson 47:1003–1014. https://doi.org/10.1007/s00723-016-0803-7

    Article  CAS  Google Scholar 

  16. Leprince JG, Lamblin G, Devaux J et al (2010) Irradiation modes’ impact on radical entrapment in photoactive resins. J Dent Res 89:1494–1498. https://doi.org/10.1177/0022034510384624

    Article  CAS  PubMed  Google Scholar 

  17. Bunce NJ (1987) Introduction to the interpretation of electron spin resonance spectra of organic radicals. J Chem Educ 64:907. https://doi.org/10.1021/ed064p907

    Article  CAS  Google Scholar 

  18. Gerson F, Huber W (2003) Electron spin resonance spectroscopy of organic radicals, 1o edn. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim

    Book  Google Scholar 

  19. Ottaviani MF, Fiorini A, Mason PN, Corvaja C (1992) Electron spin resonance studies of dental composites: effects of irradiation time, decay over time, pulverization, and temperature variations. Dent Mater 8:118–124. https://doi.org/10.1016/0109-5641(92)90066-l

    Article  CAS  PubMed  Google Scholar 

  20. Fontes ADS, Di Mauro E, Sano W et al (2009) Avaliação do comportamento de radicais livres e desempenho mecânico de compósitos restauradores dentais comerciais por Ressonância Paramagnética Eletrônica (RPE) combinada às análises convencionais. Polímeros 19:285–291. https://doi.org/10.1590/s0104-14282009000400007

    Article  CAS  Google Scholar 

  21. Da Fontes AS, Sano W, Antonia LHD, Di Mauro E (2010) EPR in the characterization of the shade effect on translucence, remaining free radicals, and polymerization depth of commercially available resin composites. Appl Magn Reson 39:381–390. https://doi.org/10.1007/s00723-010-0172-6

    Article  CAS  Google Scholar 

  22. Vicentin BLS, Netto AM, Dall’Antonia LH et al (2017) Real-time polymerization monitoring in a dual-cured resin cement by magnetic resonance. Polym Bull 74:5163–5179. https://doi.org/10.1007/s00289-017-2007-1

    Article  CAS  Google Scholar 

  23. Lamblin G, Devaux J, Biebuyck J (2007) Electron spin resonance, a useful analytical technique for studying the kinetic decay of free radicals trapped in dental resin. Eur Cells Mater 13:2262

    Google Scholar 

  24. Leprince J, Lamblin G, Truffier-Boutry D et al (2009) Kinetic study of free radicals trapped in dental resins stored in different environments. Acta Biomater 5:2518–2524. https://doi.org/10.1016/j.actbio.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  25. Truffier-Boutry D, Demoustier-Champagne S, Devaux J et al (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22:405–412. https://doi.org/10.1016/j.dental.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  26. Fonseca R, Santos C, Adabo L (2004) The influence of chemical activation on hardness of dual-curing resin cements a influência da ativação química na dureza de cimentos resinosos duais. Braz Oral Res 18:228–232. https://doi.org/10.1590/S1806-83242004000300009

    Article  PubMed  Google Scholar 

  27. Arrais CAG, Kasaz ADC, Albino LGB et al (2010) Effect of curing mode on the hardness of dual-cured composite resin core build-up materials. Braz Oral Res 24:245–249. https://doi.org/10.1590/s1806-83242010000200019

    Article  PubMed  Google Scholar 

  28. Burey A, dos Reis PJ, Santana Vicentin BL et al (2018) Polymerization shrinkage and porosity profile of dual cure dental resin cements with different adhesion to dentin mechanisms. Microsc Res Tech 81:88–96. https://doi.org/10.1002/jemt.22960

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Luiz Santana Vicentin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, B.C., Vicentin, B.L.S. & Di Mauro, E. Post-polymerization reactivity of free radicals trapped in resin-based dental restorative materials by ESR spectroscopy. Polym. Bull. 77, 3249–3262 (2020). https://doi.org/10.1007/s00289-019-02914-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02914-9

Keywords

Navigation